
Let
$
\;\left( i \right)\;(p \vee q) \vee (p \vee \sim q),\;{\text{ }}\;{\text{ }}\; \\
\left( {ii} \right)\;(p \wedge q) \wedge (p \vee \sim q),\;{\text{ }}\; \\
\left( {iii} \right)\;(p \vee q) \wedge (p \vee \sim q),\;{\text{ }}\; \\
\left( {iv} \right)\;(p \vee q) \vee (p \wedge \sim q) \\
$
Which one is tautology?
$
(a){\text{ (i)}} \\
(b){\text{ (ii)}} \\
(c){\text{ (iii)}} \\
(d){\text{ (iv)}} \\
$
Answer
602.7k+ views
Hint – A tautology is a statement that is always true, no matter what. If you construct a truth table for a statement and all of the column values for the statement are true (T), then the statement is a tautology because it's always true!
Complete step-by-step answer:
$
\left( i \right)\;(p \vee q) \vee (p \vee \sim q) = p \vee (q \vee \sim q) = p \vee t = t \\
\left( {ii} \right)\;(p \wedge q) \wedge (p \vee \sim q) \\
\left( {iii} \right)\;(p \vee q) \wedge (p \vee \sim q) = p \vee (q \wedge \sim q) - p \vee f = p \\
\left( {iv} \right)\;(p \vee q) \vee (p \wedge \sim q) \\
$
\[\begin{array}{*{20}{l}}
p&q&{ \sim q}&{p \vee q}&{p \wedge \sim q}&{(p \vee q) \vee (p \wedge \sim q)} \\
T&T&F&T&F&T \\
T&F&T&T&T&T \\
F&T&F&T&F&T \\
F&F&T&F&F&F
\end{array}\]
$
(p \wedge q) \wedge (p \vee \sim q) \\
\begin{array}{*{20}{l}}
p&q&{ \sim q}&{p \wedge q}&{p \wedge \sim q}&{(p \wedge q) \wedge (p \vee \sim q)} \\
T&T&F&T&T&T \\
T&F&T&F&T&F \\
F&T&F&F&F&F \\
F&F&T&F&T&F
\end{array} \\
$
Therefore, you can see now option (a) is correct.
Note – In this problem, first we try to construct a truth table for all the given statements. After that we will see whether these statements are a tautology or not. Hence, we get the required answer.
Complete step-by-step answer:
$
\left( i \right)\;(p \vee q) \vee (p \vee \sim q) = p \vee (q \vee \sim q) = p \vee t = t \\
\left( {ii} \right)\;(p \wedge q) \wedge (p \vee \sim q) \\
\left( {iii} \right)\;(p \vee q) \wedge (p \vee \sim q) = p \vee (q \wedge \sim q) - p \vee f = p \\
\left( {iv} \right)\;(p \vee q) \vee (p \wedge \sim q) \\
$
\[\begin{array}{*{20}{l}}
p&q&{ \sim q}&{p \vee q}&{p \wedge \sim q}&{(p \vee q) \vee (p \wedge \sim q)} \\
T&T&F&T&F&T \\
T&F&T&T&T&T \\
F&T&F&T&F&T \\
F&F&T&F&F&F
\end{array}\]
$
(p \wedge q) \wedge (p \vee \sim q) \\
\begin{array}{*{20}{l}}
p&q&{ \sim q}&{p \wedge q}&{p \wedge \sim q}&{(p \wedge q) \wedge (p \vee \sim q)} \\
T&T&F&T&T&T \\
T&F&T&F&T&F \\
F&T&F&F&F&F \\
F&F&T&F&T&F
\end{array} \\
$
Therefore, you can see now option (a) is correct.
Note – In this problem, first we try to construct a truth table for all the given statements. After that we will see whether these statements are a tautology or not. Hence, we get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

