
Let \[f(x) = \left\{
{x^2}\left| {\cos \dfrac{\pi }{2}} \right|;x \ne 0 \\
0;x = 0 \\
\right.\] $x \in \mathbb{R}$,
\[
then f is
\]
A) Differentiable both at $x = 0$ and at $x = 2$.
B) Differentiable at $x = 0$ but not differentiable at $x = 2$.
C) Not differentiable at $x = 0$ but differentiable at $x = 2$.
D) Differentiable neither at $x = 0$ nor at $x = 2$.
Answer
513.3k+ views
Hint: Function $f$ is differentiable at any point $x$ if and only if left hand derivative is equal to right hand derivative. First check for $x = 0$ that left hand derivative is equal to right hand derivative or not, and then check for $x = 2$ similarly as $x = 0$. You can also use the graph method for differentiability.
Complete step-by-step answer:
For $x = 0$,$f$ is differentiable if and only if $LHD = RHD$ (left hand derivative = right hand derivative).
$LHD = f'({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( { - h} \right)}^2}\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| - 0}}{{ - h}}\] $ = \mathop {\lim }\limits_{h \to {0^{}}} \left( { - h} \right)\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| = \left( { - 0} \right).\left[ { - 1,1} \right] = 0$
$RHD = f'({0^ + }) = \mathop {\lim }\limits_{h \to {0^{}}} \dfrac{{f(0 + h) - f(0)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^2}\left| {\cos \dfrac{\pi }{h}} \right| - 0}}{h}$ $ = \mathop {\lim }\limits_{h \to 0} h\left| {\cos \dfrac{\pi }{h}} \right| = 0$
Hence $LHD = RHD$ and $f$ is differentiable at $x = 0$.
Similarly, we check for $x = 2$.
$LHD = f'({2^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 - h) - f(2)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 - h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\cos \left( {\dfrac{\pi }{{2 - h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 - h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{{ - h\pi }}{{2(2 - h)}}} \right]$, multiply and divide by $\dfrac{{ - \pi h}}{{2(2 - h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h} \times \dfrac{{ - \pi h}}{{2(2 - h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{ - \pi h}}{{2(2 - h)}}} \right]}}{{\dfrac{{ - \pi h}}{{2(2 - h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$LHD = - \pi $
$RHD = f'({2^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 + h) - f(2)}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 + h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\cos \left( {\dfrac{\pi }{{2 + h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 + h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{{h\pi }}{{2(2 + h)}}} \right]$ , multiply and divide by $\dfrac{{\pi h}}{{2(2 + h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h} \times \dfrac{{\pi h}}{{2(2 + h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{\pi h}}{{2(2 + h)}}} \right]}}{{\dfrac{{\pi h}}{{2(2 + h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$RHD = \pi $
Hence \[LHD \ne RHD\], then $f$ is not differentiable at $x = 2$.
Then the correct answer is option B.
Note: Graph method for checking differentiability: A function $f$ is differentiable at $x = a$ whenever $f'(a)$ exists, which means that $f$ has a tangent line at $(a,f(a))$ and thus $f$ is locally linear at the value $x = a$. Informally, this means that the function looks like a line when viewed up close at $(a,f(a))$ and that there is not a corner point or cusp at $(a,f(a))$.To use graph first need to draw accurate graph of given function.
Complete step-by-step answer:
For $x = 0$,$f$ is differentiable if and only if $LHD = RHD$ (left hand derivative = right hand derivative).
$LHD = f'({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( { - h} \right)}^2}\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| - 0}}{{ - h}}\] $ = \mathop {\lim }\limits_{h \to {0^{}}} \left( { - h} \right)\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| = \left( { - 0} \right).\left[ { - 1,1} \right] = 0$
$RHD = f'({0^ + }) = \mathop {\lim }\limits_{h \to {0^{}}} \dfrac{{f(0 + h) - f(0)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^2}\left| {\cos \dfrac{\pi }{h}} \right| - 0}}{h}$ $ = \mathop {\lim }\limits_{h \to 0} h\left| {\cos \dfrac{\pi }{h}} \right| = 0$
Hence $LHD = RHD$ and $f$ is differentiable at $x = 0$.
Similarly, we check for $x = 2$.
$LHD = f'({2^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 - h) - f(2)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 - h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\cos \left( {\dfrac{\pi }{{2 - h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 - h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{{ - h\pi }}{{2(2 - h)}}} \right]$, multiply and divide by $\dfrac{{ - \pi h}}{{2(2 - h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h} \times \dfrac{{ - \pi h}}{{2(2 - h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{ - \pi h}}{{2(2 - h)}}} \right]}}{{\dfrac{{ - \pi h}}{{2(2 - h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$LHD = - \pi $
$RHD = f'({2^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 + h) - f(2)}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 + h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\cos \left( {\dfrac{\pi }{{2 + h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 + h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{{h\pi }}{{2(2 + h)}}} \right]$ , multiply and divide by $\dfrac{{\pi h}}{{2(2 + h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h} \times \dfrac{{\pi h}}{{2(2 + h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{\pi h}}{{2(2 + h)}}} \right]}}{{\dfrac{{\pi h}}{{2(2 + h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$RHD = \pi $
Hence \[LHD \ne RHD\], then $f$ is not differentiable at $x = 2$.
Then the correct answer is option B.
Note: Graph method for checking differentiability: A function $f$ is differentiable at $x = a$ whenever $f'(a)$ exists, which means that $f$ has a tangent line at $(a,f(a))$ and thus $f$ is locally linear at the value $x = a$. Informally, this means that the function looks like a line when viewed up close at $(a,f(a))$ and that there is not a corner point or cusp at $(a,f(a))$.To use graph first need to draw accurate graph of given function.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE

Renal portal system of frog is significant in A Quick class 11 biology CBSE

How much is 23 kg in pounds class 11 chemistry CBSE
