
Let \[f(x) = \left\{
{x^2}\left| {\cos \dfrac{\pi }{2}} \right|;x \ne 0 \\
0;x = 0 \\
\right.\] $x \in \mathbb{R}$,
\[
then f is
\]
A) Differentiable both at $x = 0$ and at $x = 2$.
B) Differentiable at $x = 0$ but not differentiable at $x = 2$.
C) Not differentiable at $x = 0$ but differentiable at $x = 2$.
D) Differentiable neither at $x = 0$ nor at $x = 2$.
Answer
578.4k+ views
Hint: Function $f$ is differentiable at any point $x$ if and only if left hand derivative is equal to right hand derivative. First check for $x = 0$ that left hand derivative is equal to right hand derivative or not, and then check for $x = 2$ similarly as $x = 0$. You can also use the graph method for differentiability.
Complete step-by-step answer:
For $x = 0$,$f$ is differentiable if and only if $LHD = RHD$ (left hand derivative = right hand derivative).
$LHD = f'({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( { - h} \right)}^2}\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| - 0}}{{ - h}}\] $ = \mathop {\lim }\limits_{h \to {0^{}}} \left( { - h} \right)\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| = \left( { - 0} \right).\left[ { - 1,1} \right] = 0$
$RHD = f'({0^ + }) = \mathop {\lim }\limits_{h \to {0^{}}} \dfrac{{f(0 + h) - f(0)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^2}\left| {\cos \dfrac{\pi }{h}} \right| - 0}}{h}$ $ = \mathop {\lim }\limits_{h \to 0} h\left| {\cos \dfrac{\pi }{h}} \right| = 0$
Hence $LHD = RHD$ and $f$ is differentiable at $x = 0$.
Similarly, we check for $x = 2$.
$LHD = f'({2^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 - h) - f(2)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 - h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\cos \left( {\dfrac{\pi }{{2 - h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 - h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{{ - h\pi }}{{2(2 - h)}}} \right]$, multiply and divide by $\dfrac{{ - \pi h}}{{2(2 - h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h} \times \dfrac{{ - \pi h}}{{2(2 - h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{ - \pi h}}{{2(2 - h)}}} \right]}}{{\dfrac{{ - \pi h}}{{2(2 - h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$LHD = - \pi $
$RHD = f'({2^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 + h) - f(2)}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 + h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\cos \left( {\dfrac{\pi }{{2 + h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 + h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{{h\pi }}{{2(2 + h)}}} \right]$ , multiply and divide by $\dfrac{{\pi h}}{{2(2 + h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h} \times \dfrac{{\pi h}}{{2(2 + h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{\pi h}}{{2(2 + h)}}} \right]}}{{\dfrac{{\pi h}}{{2(2 + h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$RHD = \pi $
Hence \[LHD \ne RHD\], then $f$ is not differentiable at $x = 2$.
Then the correct answer is option B.
Note: Graph method for checking differentiability: A function $f$ is differentiable at $x = a$ whenever $f'(a)$ exists, which means that $f$ has a tangent line at $(a,f(a))$ and thus $f$ is locally linear at the value $x = a$. Informally, this means that the function looks like a line when viewed up close at $(a,f(a))$ and that there is not a corner point or cusp at $(a,f(a))$.To use graph first need to draw accurate graph of given function.
Complete step-by-step answer:
For $x = 0$,$f$ is differentiable if and only if $LHD = RHD$ (left hand derivative = right hand derivative).
$LHD = f'({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( { - h} \right)}^2}\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| - 0}}{{ - h}}\] $ = \mathop {\lim }\limits_{h \to {0^{}}} \left( { - h} \right)\left| {\cos \left( {\dfrac{\pi }{{ - h}}} \right)} \right| = \left( { - 0} \right).\left[ { - 1,1} \right] = 0$
$RHD = f'({0^ + }) = \mathop {\lim }\limits_{h \to {0^{}}} \dfrac{{f(0 + h) - f(0)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^2}\left| {\cos \dfrac{\pi }{h}} \right| - 0}}{h}$ $ = \mathop {\lim }\limits_{h \to 0} h\left| {\cos \dfrac{\pi }{h}} \right| = 0$
Hence $LHD = RHD$ and $f$ is differentiable at $x = 0$.
Similarly, we check for $x = 2$.
$LHD = f'({2^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 - h) - f(2)}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 - h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}\cos \left( {\dfrac{\pi }{{2 - h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 - h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h}.\sin \left[ {\dfrac{{ - h\pi }}{{2(2 - h)}}} \right]$, multiply and divide by $\dfrac{{ - \pi h}}{{2(2 - h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 - h)}^2}}}{h} \times \dfrac{{ - \pi h}}{{2(2 - h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{ - \pi h}}{{2(2 - h)}}} \right]}}{{\dfrac{{ - \pi h}}{{2(2 - h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$LHD = - \pi $
$RHD = f'({2^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(2 + h) - f(2)}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\left| {\cos \left( {\dfrac{\pi }{{2 + h}}} \right)} \right| - {2^2}\cos \dfrac{\pi }{2}}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}\cos \left( {\dfrac{\pi }{{2 + h}}} \right) - 0}}{h}$, convert $\cos $ into $\sin $ form
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{\pi }{2} - \dfrac{\pi }{{2 + h}}} \right]$
$ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h}.\sin \left[ {\dfrac{{h\pi }}{{2(2 + h)}}} \right]$ , multiply and divide by $\dfrac{{\pi h}}{{2(2 + h)}}$
\[ = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{(2 + h)}^2}}}{h} \times \dfrac{{\pi h}}{{2(2 + h)}}.\left[ {\dfrac{{\sin \left[ {\dfrac{{\pi h}}{{2(2 + h)}}} \right]}}{{\dfrac{{\pi h}}{{2(2 + h)}}}}} \right]\], as we know $\mathop {\lim }\limits_{a \to 0} \dfrac{{\sin a}}{a} = 1$
$RHD = \pi $
Hence \[LHD \ne RHD\], then $f$ is not differentiable at $x = 2$.
Then the correct answer is option B.
Note: Graph method for checking differentiability: A function $f$ is differentiable at $x = a$ whenever $f'(a)$ exists, which means that $f$ has a tangent line at $(a,f(a))$ and thus $f$ is locally linear at the value $x = a$. Informally, this means that the function looks like a line when viewed up close at $(a,f(a))$ and that there is not a corner point or cusp at $(a,f(a))$.To use graph first need to draw accurate graph of given function.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

