
Let $f:R\to R$ be a function such that $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$, $x\in R$. Find the value of $f\left( 2 \right)$?
(a) 8
(b) –2
(c) –4
(d) 30
Answer
578.1k+ views
Hint: We use the fact $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ are constants as the function ‘f’ is dependent on the variable x to start the problem. We differentiate the function ‘f’ and substitute 1 in place of x after differentiating to get a relation between $f''\left( 2 \right)$ and $f'\left( 1 \right)$. We differentiate ‘f’ for the second time and substitute 2 in place of x to get another relation between $f''\left( 2 \right)$ and $f'\left( 1 \right)$. Using these two relations we calculate the values of $f''\left( 2 \right)$ and $f'\left( 1 \right)$. We differentiate ‘f’ for the third time and substitute 3 in place of x to get the value of $f'''\left( 3 \right)$. Using all these values we calculate the required value of $f\left( 2 \right)$.
Complete step-by-step answer:
Given that we have a function defined on $f:R\to R$ as $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$. We need to find the value of $f\left( 2 \right)$.
We know that the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ are constants as the function ‘f’ is dependent on the variable x. So, this makes x as an independent variable and the derivatives of function ‘f’ must be dependent on x.
Now we have function $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$.
Let differentiate the function ‘f’ on both sides with respect to x.
$\Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d{{x}^{3}}}{dx}+\dfrac{d\left( {{x}^{2}}f'\left( 1 \right) \right)}{dx}+\dfrac{d\left( xf''\left( 2 \right) \right)}{dx}+\dfrac{d\left( f'''\left( 3 \right) \right)}{dx}$ ---(1).
We know that $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$, $\dfrac{d}{dx}\left( af\left( x \right) \right)=a\dfrac{d}{dx}\left( f\left( x \right) \right)$ and $\dfrac{d}{dx}\left( a \right)=0$. We use this as equation (1).
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)+0$.
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)$ ---(2).
Let us substitute 1 in place of x.
$\Rightarrow f'\left( 1 \right)=3{{\left( 1 \right)}^{2}}+2\left( 1 \right)f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)=3+2f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)-2f'\left( 1 \right)=3+f''\left( 2 \right)$.
$\Rightarrow -f'\left( 1 \right)=3+f''\left( 2 \right)$ ---(3).
Let us differentiate equation (2) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f'\left( x \right) \right)}{dx}=\dfrac{d\left( 3{{x}^{2}} \right)}{dx}+\dfrac{d\left( 2xf'\left( 1 \right) \right)}{dx}+\dfrac{d\left( f''\left( 2 \right) \right)}{dx}$.
$\Rightarrow f''\left( x \right)=6x+2f'\left( 1 \right)$ ---(4).
Let us substitute 2 in place of x in equation (4).
$\Rightarrow f''\left( 2 \right)=6\left( 2 \right)+2f'\left( 1 \right)$.
$\Rightarrow f''\left( 2 \right)=12+2f'\left( 1 \right)$ ---(5).
Let us substitute equation (5) in equation (3),
$\Rightarrow -f'\left( 1 \right)=3+12+2f'\left( 1 \right)$.
$\Rightarrow -f'\left( 1 \right)-2f'\left( 1 \right)=15$.
$\Rightarrow -3f'\left( 1 \right)=15$.
$\Rightarrow f'\left( 1 \right)=\dfrac{15}{-3}$.
$\Rightarrow f'\left( 1 \right)=-5$ ---(6).
Let us substitute the value of $f'\left( 1 \right)$ in equation (5).
$\Rightarrow f''\left( 2 \right)=12+2\left( -5 \right)$.
$\Rightarrow f''\left( 2 \right)=12-10$
$\Rightarrow f''\left( 2 \right)=2$ ---(7)
Let us differentiate equation (4) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f''\left( x \right) \right)}{dx}=\dfrac{d\left( 6x \right)}{dx}+\dfrac{d\left( 2f'\left( 1 \right) \right)}{dx}$.
$\Rightarrow f'''\left( x \right)=6+0$.
$\Rightarrow f'''\left( x \right)=6$.
Let us substitute 3 in place of x.
$\Rightarrow f'''\left( 3 \right)=6$ ---(8).
Let us the values obtained in equations (6), (7) and (8) in the function $f\left( x \right)$.
We get $f\left( x \right)={{x}^{3}}+{{x}^{2}}\left( -5 \right)+x\left( 2 \right)+6$.
$\Rightarrow f\left( x \right)={{x}^{3}}-5{{x}^{2}}+2x+6$.
Let us substitute 2 in place of x.
$\Rightarrow f\left( 2 \right)={{\left( 2 \right)}^{3}}-5{{\left( 2 \right)}^{2}}+2\left( 2 \right)+6$.
$\Rightarrow f\left( 2 \right)=8-5\left( 4 \right)+4+6$.
$\Rightarrow f\left( 2 \right)=18-20$.
$\Rightarrow f\left( 2 \right)=-2$.
We have found the value of $f\left( 2 \right)$ as –2.
∴ The value of $f\left( 2 \right)$ is –2.
So, the correct answer is “Option b”.
Note: We should not different $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ again as they were constants. We always should check what are the independent and dependent variables involved in the function. We should not make any calculation mistakes while solving for the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$. Similarly, we can expect problems to find the derivatives of function ‘f’.
Complete step-by-step answer:
Given that we have a function defined on $f:R\to R$ as $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$. We need to find the value of $f\left( 2 \right)$.
We know that the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ are constants as the function ‘f’ is dependent on the variable x. So, this makes x as an independent variable and the derivatives of function ‘f’ must be dependent on x.
Now we have function $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$.
Let differentiate the function ‘f’ on both sides with respect to x.
$\Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d{{x}^{3}}}{dx}+\dfrac{d\left( {{x}^{2}}f'\left( 1 \right) \right)}{dx}+\dfrac{d\left( xf''\left( 2 \right) \right)}{dx}+\dfrac{d\left( f'''\left( 3 \right) \right)}{dx}$ ---(1).
We know that $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$, $\dfrac{d}{dx}\left( af\left( x \right) \right)=a\dfrac{d}{dx}\left( f\left( x \right) \right)$ and $\dfrac{d}{dx}\left( a \right)=0$. We use this as equation (1).
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)+0$.
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)$ ---(2).
Let us substitute 1 in place of x.
$\Rightarrow f'\left( 1 \right)=3{{\left( 1 \right)}^{2}}+2\left( 1 \right)f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)=3+2f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)-2f'\left( 1 \right)=3+f''\left( 2 \right)$.
$\Rightarrow -f'\left( 1 \right)=3+f''\left( 2 \right)$ ---(3).
Let us differentiate equation (2) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f'\left( x \right) \right)}{dx}=\dfrac{d\left( 3{{x}^{2}} \right)}{dx}+\dfrac{d\left( 2xf'\left( 1 \right) \right)}{dx}+\dfrac{d\left( f''\left( 2 \right) \right)}{dx}$.
$\Rightarrow f''\left( x \right)=6x+2f'\left( 1 \right)$ ---(4).
Let us substitute 2 in place of x in equation (4).
$\Rightarrow f''\left( 2 \right)=6\left( 2 \right)+2f'\left( 1 \right)$.
$\Rightarrow f''\left( 2 \right)=12+2f'\left( 1 \right)$ ---(5).
Let us substitute equation (5) in equation (3),
$\Rightarrow -f'\left( 1 \right)=3+12+2f'\left( 1 \right)$.
$\Rightarrow -f'\left( 1 \right)-2f'\left( 1 \right)=15$.
$\Rightarrow -3f'\left( 1 \right)=15$.
$\Rightarrow f'\left( 1 \right)=\dfrac{15}{-3}$.
$\Rightarrow f'\left( 1 \right)=-5$ ---(6).
Let us substitute the value of $f'\left( 1 \right)$ in equation (5).
$\Rightarrow f''\left( 2 \right)=12+2\left( -5 \right)$.
$\Rightarrow f''\left( 2 \right)=12-10$
$\Rightarrow f''\left( 2 \right)=2$ ---(7)
Let us differentiate equation (4) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f''\left( x \right) \right)}{dx}=\dfrac{d\left( 6x \right)}{dx}+\dfrac{d\left( 2f'\left( 1 \right) \right)}{dx}$.
$\Rightarrow f'''\left( x \right)=6+0$.
$\Rightarrow f'''\left( x \right)=6$.
Let us substitute 3 in place of x.
$\Rightarrow f'''\left( 3 \right)=6$ ---(8).
Let us the values obtained in equations (6), (7) and (8) in the function $f\left( x \right)$.
We get $f\left( x \right)={{x}^{3}}+{{x}^{2}}\left( -5 \right)+x\left( 2 \right)+6$.
$\Rightarrow f\left( x \right)={{x}^{3}}-5{{x}^{2}}+2x+6$.
Let us substitute 2 in place of x.
$\Rightarrow f\left( 2 \right)={{\left( 2 \right)}^{3}}-5{{\left( 2 \right)}^{2}}+2\left( 2 \right)+6$.
$\Rightarrow f\left( 2 \right)=8-5\left( 4 \right)+4+6$.
$\Rightarrow f\left( 2 \right)=18-20$.
$\Rightarrow f\left( 2 \right)=-2$.
We have found the value of $f\left( 2 \right)$ as –2.
∴ The value of $f\left( 2 \right)$ is –2.
So, the correct answer is “Option b”.
Note: We should not different $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ again as they were constants. We always should check what are the independent and dependent variables involved in the function. We should not make any calculation mistakes while solving for the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$. Similarly, we can expect problems to find the derivatives of function ‘f’.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

