
Let $f:R\to R$ be a function such that $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$, $x\in R$. Find the value of $f\left( 2 \right)$?
(a) 8
(b) –2
(c) –4
(d) 30
Answer
512.7k+ views
Hint: We use the fact $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ are constants as the function ‘f’ is dependent on the variable x to start the problem. We differentiate the function ‘f’ and substitute 1 in place of x after differentiating to get a relation between $f''\left( 2 \right)$ and $f'\left( 1 \right)$. We differentiate ‘f’ for the second time and substitute 2 in place of x to get another relation between $f''\left( 2 \right)$ and $f'\left( 1 \right)$. Using these two relations we calculate the values of $f''\left( 2 \right)$ and $f'\left( 1 \right)$. We differentiate ‘f’ for the third time and substitute 3 in place of x to get the value of $f'''\left( 3 \right)$. Using all these values we calculate the required value of $f\left( 2 \right)$.
Complete step-by-step answer:
Given that we have a function defined on $f:R\to R$ as $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$. We need to find the value of $f\left( 2 \right)$.
We know that the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ are constants as the function ‘f’ is dependent on the variable x. So, this makes x as an independent variable and the derivatives of function ‘f’ must be dependent on x.
Now we have function $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$.
Let differentiate the function ‘f’ on both sides with respect to x.
$\Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d{{x}^{3}}}{dx}+\dfrac{d\left( {{x}^{2}}f'\left( 1 \right) \right)}{dx}+\dfrac{d\left( xf''\left( 2 \right) \right)}{dx}+\dfrac{d\left( f'''\left( 3 \right) \right)}{dx}$ ---(1).
We know that $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$, $\dfrac{d}{dx}\left( af\left( x \right) \right)=a\dfrac{d}{dx}\left( f\left( x \right) \right)$ and $\dfrac{d}{dx}\left( a \right)=0$. We use this as equation (1).
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)+0$.
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)$ ---(2).
Let us substitute 1 in place of x.
$\Rightarrow f'\left( 1 \right)=3{{\left( 1 \right)}^{2}}+2\left( 1 \right)f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)=3+2f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)-2f'\left( 1 \right)=3+f''\left( 2 \right)$.
$\Rightarrow -f'\left( 1 \right)=3+f''\left( 2 \right)$ ---(3).
Let us differentiate equation (2) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f'\left( x \right) \right)}{dx}=\dfrac{d\left( 3{{x}^{2}} \right)}{dx}+\dfrac{d\left( 2xf'\left( 1 \right) \right)}{dx}+\dfrac{d\left( f''\left( 2 \right) \right)}{dx}$.
$\Rightarrow f''\left( x \right)=6x+2f'\left( 1 \right)$ ---(4).
Let us substitute 2 in place of x in equation (4).
$\Rightarrow f''\left( 2 \right)=6\left( 2 \right)+2f'\left( 1 \right)$.
$\Rightarrow f''\left( 2 \right)=12+2f'\left( 1 \right)$ ---(5).
Let us substitute equation (5) in equation (3),
$\Rightarrow -f'\left( 1 \right)=3+12+2f'\left( 1 \right)$.
$\Rightarrow -f'\left( 1 \right)-2f'\left( 1 \right)=15$.
$\Rightarrow -3f'\left( 1 \right)=15$.
$\Rightarrow f'\left( 1 \right)=\dfrac{15}{-3}$.
$\Rightarrow f'\left( 1 \right)=-5$ ---(6).
Let us substitute the value of $f'\left( 1 \right)$ in equation (5).
$\Rightarrow f''\left( 2 \right)=12+2\left( -5 \right)$.
$\Rightarrow f''\left( 2 \right)=12-10$
$\Rightarrow f''\left( 2 \right)=2$ ---(7)
Let us differentiate equation (4) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f''\left( x \right) \right)}{dx}=\dfrac{d\left( 6x \right)}{dx}+\dfrac{d\left( 2f'\left( 1 \right) \right)}{dx}$.
$\Rightarrow f'''\left( x \right)=6+0$.
$\Rightarrow f'''\left( x \right)=6$.
Let us substitute 3 in place of x.
$\Rightarrow f'''\left( 3 \right)=6$ ---(8).
Let us the values obtained in equations (6), (7) and (8) in the function $f\left( x \right)$.
We get $f\left( x \right)={{x}^{3}}+{{x}^{2}}\left( -5 \right)+x\left( 2 \right)+6$.
$\Rightarrow f\left( x \right)={{x}^{3}}-5{{x}^{2}}+2x+6$.
Let us substitute 2 in place of x.
$\Rightarrow f\left( 2 \right)={{\left( 2 \right)}^{3}}-5{{\left( 2 \right)}^{2}}+2\left( 2 \right)+6$.
$\Rightarrow f\left( 2 \right)=8-5\left( 4 \right)+4+6$.
$\Rightarrow f\left( 2 \right)=18-20$.
$\Rightarrow f\left( 2 \right)=-2$.
We have found the value of $f\left( 2 \right)$ as –2.
∴ The value of $f\left( 2 \right)$ is –2.
So, the correct answer is “Option b”.
Note: We should not different $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ again as they were constants. We always should check what are the independent and dependent variables involved in the function. We should not make any calculation mistakes while solving for the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$. Similarly, we can expect problems to find the derivatives of function ‘f’.
Complete step-by-step answer:
Given that we have a function defined on $f:R\to R$ as $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$. We need to find the value of $f\left( 2 \right)$.
We know that the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ are constants as the function ‘f’ is dependent on the variable x. So, this makes x as an independent variable and the derivatives of function ‘f’ must be dependent on x.
Now we have function $f\left( x \right)={{x}^{3}}+{{x}^{2}}f'\left( 1 \right)+xf''\left( 2 \right)+f'''\left( 3 \right)$.
Let differentiate the function ‘f’ on both sides with respect to x.
$\Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d{{x}^{3}}}{dx}+\dfrac{d\left( {{x}^{2}}f'\left( 1 \right) \right)}{dx}+\dfrac{d\left( xf''\left( 2 \right) \right)}{dx}+\dfrac{d\left( f'''\left( 3 \right) \right)}{dx}$ ---(1).
We know that $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$, $\dfrac{d}{dx}\left( af\left( x \right) \right)=a\dfrac{d}{dx}\left( f\left( x \right) \right)$ and $\dfrac{d}{dx}\left( a \right)=0$. We use this as equation (1).
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)+0$.
$\Rightarrow f'\left( x \right)=3{{x}^{2}}+2xf'\left( 1 \right)+f''\left( 2 \right)$ ---(2).
Let us substitute 1 in place of x.
$\Rightarrow f'\left( 1 \right)=3{{\left( 1 \right)}^{2}}+2\left( 1 \right)f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)=3+2f'\left( 1 \right)+f''\left( 2 \right)$.
$\Rightarrow f'\left( 1 \right)-2f'\left( 1 \right)=3+f''\left( 2 \right)$.
$\Rightarrow -f'\left( 1 \right)=3+f''\left( 2 \right)$ ---(3).
Let us differentiate equation (2) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f'\left( x \right) \right)}{dx}=\dfrac{d\left( 3{{x}^{2}} \right)}{dx}+\dfrac{d\left( 2xf'\left( 1 \right) \right)}{dx}+\dfrac{d\left( f''\left( 2 \right) \right)}{dx}$.
$\Rightarrow f''\left( x \right)=6x+2f'\left( 1 \right)$ ---(4).
Let us substitute 2 in place of x in equation (4).
$\Rightarrow f''\left( 2 \right)=6\left( 2 \right)+2f'\left( 1 \right)$.
$\Rightarrow f''\left( 2 \right)=12+2f'\left( 1 \right)$ ---(5).
Let us substitute equation (5) in equation (3),
$\Rightarrow -f'\left( 1 \right)=3+12+2f'\left( 1 \right)$.
$\Rightarrow -f'\left( 1 \right)-2f'\left( 1 \right)=15$.
$\Rightarrow -3f'\left( 1 \right)=15$.
$\Rightarrow f'\left( 1 \right)=\dfrac{15}{-3}$.
$\Rightarrow f'\left( 1 \right)=-5$ ---(6).
Let us substitute the value of $f'\left( 1 \right)$ in equation (5).
$\Rightarrow f''\left( 2 \right)=12+2\left( -5 \right)$.
$\Rightarrow f''\left( 2 \right)=12-10$
$\Rightarrow f''\left( 2 \right)=2$ ---(7)
Let us differentiate equation (4) with respect to x on both sides,
$\Rightarrow \dfrac{d\left( f''\left( x \right) \right)}{dx}=\dfrac{d\left( 6x \right)}{dx}+\dfrac{d\left( 2f'\left( 1 \right) \right)}{dx}$.
$\Rightarrow f'''\left( x \right)=6+0$.
$\Rightarrow f'''\left( x \right)=6$.
Let us substitute 3 in place of x.
$\Rightarrow f'''\left( 3 \right)=6$ ---(8).
Let us the values obtained in equations (6), (7) and (8) in the function $f\left( x \right)$.
We get $f\left( x \right)={{x}^{3}}+{{x}^{2}}\left( -5 \right)+x\left( 2 \right)+6$.
$\Rightarrow f\left( x \right)={{x}^{3}}-5{{x}^{2}}+2x+6$.
Let us substitute 2 in place of x.
$\Rightarrow f\left( 2 \right)={{\left( 2 \right)}^{3}}-5{{\left( 2 \right)}^{2}}+2\left( 2 \right)+6$.
$\Rightarrow f\left( 2 \right)=8-5\left( 4 \right)+4+6$.
$\Rightarrow f\left( 2 \right)=18-20$.
$\Rightarrow f\left( 2 \right)=-2$.
We have found the value of $f\left( 2 \right)$ as –2.
∴ The value of $f\left( 2 \right)$ is –2.
So, the correct answer is “Option b”.
Note: We should not different $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$ again as they were constants. We always should check what are the independent and dependent variables involved in the function. We should not make any calculation mistakes while solving for the values of $f'''\left( 3 \right)$, $f''\left( 2 \right)$ and $f'\left( 1 \right)$. Similarly, we can expect problems to find the derivatives of function ‘f’.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
