
Let $f\left( x \right)=\left[ x \right]+\left[ -x \right]$, where $\left[ x \right]$ denotes the greatest integer less than or equal to x.
Then, for any integer m
(a) \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)=f\left( m \right)\]
(b) \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)\ne f\left( m \right)\]
(c) \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)\] does not exist
(d) None of the above
Answer
612.3k+ views
Hint: Try to draw the graph of $f\left( x \right)$ and analyze the graph at points of integers.
Complete step-by-step answer:
In the question we are given a function \[f\left( x \right)\] such that \[f\left( x \right)=\left[ x \right]+\left[ -x \right]\], where $\left[ x \right]$ denotes the greatest integer less than or equal to x.
Now \[f\left( x \right)=\left[ x \right]+\left[ -x \right]\] , so if x is integer then \[\left[ x \right]=x\] and \[\left[ -x \right]=-x\]
So, \[f\left( x \right)=x-x=0\]
If x is not an integer then \[\left[ x \right]=x\] and \[\left[ -x \right]=-\left[ x \right]=-1\]
So,
\[f\left( x \right)=x+\left[ -x \right]\]
\[=\left[ x \right]+\left( -\left[ x \right] \right)-1\]
\[=-1\]
So,
\[f\left( x \right)=\left\{ \begin{matrix}
0,x\in Integer \\
-1,x\notin Integer \\
\end{matrix} \right.\]
So, Range of \[f\left( x \right)=\left\{ 0,-1 \right\}\] and Domain of \[f\left( x \right)=R\]
Let \[m\in Integer\]
So its left hand limit is,
L.H.L \[=\underset{x\to {{m}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-1\]
And it's right hand limit is,
R.H.L \[=\underset{x\to {{m}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-1\]
So, \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)\] exists.
But \[f\left( m \right)\] if m is integer \[=0\]
So, \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)\ne f\left( m \right)\]
Hence, the correct option is ‘B’.
Note: Students should analyze the graph properly to do these types of problems easily. They should also be careful about continuity of various points.
Complete step-by-step answer:
In the question we are given a function \[f\left( x \right)\] such that \[f\left( x \right)=\left[ x \right]+\left[ -x \right]\], where $\left[ x \right]$ denotes the greatest integer less than or equal to x.
Now \[f\left( x \right)=\left[ x \right]+\left[ -x \right]\] , so if x is integer then \[\left[ x \right]=x\] and \[\left[ -x \right]=-x\]
So, \[f\left( x \right)=x-x=0\]
If x is not an integer then \[\left[ x \right]=x\] and \[\left[ -x \right]=-\left[ x \right]=-1\]
So,
\[f\left( x \right)=x+\left[ -x \right]\]
\[=\left[ x \right]+\left( -\left[ x \right] \right)-1\]
\[=-1\]
So,
\[f\left( x \right)=\left\{ \begin{matrix}
0,x\in Integer \\
-1,x\notin Integer \\
\end{matrix} \right.\]
So, Range of \[f\left( x \right)=\left\{ 0,-1 \right\}\] and Domain of \[f\left( x \right)=R\]
Let \[m\in Integer\]
So its left hand limit is,
L.H.L \[=\underset{x\to {{m}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-1\]
And it's right hand limit is,
R.H.L \[=\underset{x\to {{m}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-1\]
So, \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)\] exists.
But \[f\left( m \right)\] if m is integer \[=0\]
So, \[\underset{x\to m}{\mathop{\lim }}\,f\left( x \right)\ne f\left( m \right)\]
Hence, the correct option is ‘B’.
Note: Students should analyze the graph properly to do these types of problems easily. They should also be careful about continuity of various points.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

