
Let $f\left( x \right)={{e}^{x}}-x$and $g\left( x \right)={{x}^{2}},\forall x\in R$. Then the set of all $x\in R$where the function $h\left( x \right)=\left( fog \right)\left( x \right)$ is increasing is,\[\]
A.$\left[ -1,\dfrac{-1}{2} \right]\bigcup \left[ \dfrac{1}{2},\infty \right)$\[\]
B. $\left[ 0,\dfrac{1}{2} \right]\bigcup \left[ 1,\infty \right)$\[\]
C. $\left[ \dfrac{-1}{2},0 \right]\bigcup \left[ 1,\infty \right)$\[\]
D. $\left[ 0,\infty \right)$\[\]
Answer
586.8k+ views
Hint: We define the function $h\left( x \right)$ using $f\left( x \right)$ and $g\left( x \right)$. We differentiate $h\left( x \right)$ and take the condition${{h}^{'}}\left( x \right)\ge 0$. We factorize ${{h}^{'}}\left( x \right)$ and then investigate each factor for which interval contains the possible values of $x$.\[\]
Complete step by step answer:
We know that the function $f\left( x \right)$ is increasing within the interval $\left[ a,b \right]$ then ${{f}^{'}}\left( x \right)\ge 0$ for all $x\in \left[ a,b \right]$
The given real valued functions are $f\left( x \right)={{e}^{x}}-x$and $g\left( x \right)={{x}^{2}}-x$ . Let us assume $g\left( x \right)=u$.The given composite function can be written with substitution $g\left( x \right)=u$ as
\[h\left( x \right)=fog\left( x \right)=f\left( g\left( x \right) \right)=f\left( u \right)={{e}^{u}}-u\]
We put back $u=g\left( x \right)={{x}^{2}}-x$ above and get ,
\[h\left( x \right)={{e}^{{{x}^{2}}-x}}-{{x}^{2}}-x\]
We now differentiate $h\left( x \right)$ with respect to $x$ and get
\[\begin{align}
& {{h}^{'}}\left( x \right)=\left( 2x-1 \right){{e}^{{{x}^{2}}-x}}-\left( 2x-1 \right) \\
& \Rightarrow {{h}^{'}}\left( x \right)=\left( 2x-1 \right)\left( {{e}^{{{x}^{2}}-x}}-1 \right) \\
\end{align}\]
We see that the function $h\left( x \right)$ is increasing in the given domain $R$ then ${{h}^{'}}\left( x \right)>0$. So we have
\[{{h}^{'}}\left( x \right)=\left( 2x-1 \right)\left( {{e}^{{{x}^{2}}-x}}-1 \right)\ge 0\]
We know that the product two numbers is positive if and only if when both of them are positive or both of them are negative. So we get two cases.\[\]
Case-1: If both of them are non-negative , we take the first factor and find the possible values of $x$.
\[\begin{align}
& 2x-1\ge 0 \\
& \Rightarrow x\ge \dfrac{1}{2} \\
& \Rightarrow x\in \left[ \dfrac{1}{2},\infty \right) \\
\end{align}\]
Now we take the second factor and get,
\[\begin{align}
& {{e}^{{{x}^{2}}-x}}-1\ge 0 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\ge 1 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\ge {{e}^{0}} \\
\end{align}\]
We know from the identity that for any $a>1$ and $m,n\in R$, ${{a}^{m}}>{{a}^{n}}\Leftrightarrow m>n$. We use it in above and get
\[\begin{align}
& \Rightarrow {{e}^{{{x}^{2}}-x}}\ge {{e}^{0}} \\
& \Rightarrow {{x}^{2}}-x\ge 0 \\
& \Rightarrow x\left( x-1 \right)\ge 0 \\
& \Rightarrow x\ge 0,x-1\ge 0\text{ or }x\le 0,x-1\le 0 \\
\end{align}\]
So if we consider $x\ge 0,x-1\ge 0$ then the admissible interval for $x$ is $\left[ 0,\infty \right)\bigcap \left[ 1,\infty \right)=\left[ 1,\infty \right)$. If we can also consider $x\le 0,x-1\le 0$ then the admissible interval for $x$ is $\left( -\infty ,0 \right]\bigcap \left( -\infty ,1 \right]=\left( -\infty ,0 \right]$. So all possible of $x$ from the second factor is $\left( -\infty ,0 \right]\bigcup \left[ 1,\infty \right).$
So if take the intersection of the two intervals obtained from both the factors in case-1 then we get
\[x\in \left[ \dfrac{1}{2},\infty \right)\bigcap \left( \left( -\infty ,0 \right]\bigcup \left[ 1,\infty \right) \right)=\left[ 1,\infty \right)\]
Case-2: If both of them are non-positive , we take the first factor and find the possible values of $x$.
\[\begin{align}
& 2x-1\le 0 \\
& \Rightarrow x\le \dfrac{1}{2} \\
& \Rightarrow x\in \left( -\infty ,\dfrac{1}{2} \right] \\
\end{align}\]
Now we take the second factor and get,
\[\begin{align}
& {{e}^{{{x}^{2}}-x}}-1\le 0 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\le 1 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\le {{e}^{0}} \\
& \Rightarrow {{x}^{2}}-x\le 0 \\
& \Rightarrow x\left( x-1 \right)\le 0 \\
& \Rightarrow x\le 0,x\ge 1\text{ or x}\ge \text{0,x}\le \text{1} \\
\end{align}\]
We know that if the So if we consider $x\le 0,x\ge 1$ then the admissible interval for $x$ is $\left( -\infty ,0 \right]\bigcap \left[ 1,\infty \right)=\Phi $. If we consider $x\ge 0,x\le 1$ then the admissible interval for $x$ is $\left[ 0,\infty \right)\bigcap \left( -\infty ,1 \right]=\left[ 0,1 \right]$. So all possible of $x$ from the second factor is $\Phi \bigcup \left[ 0,1 \right]=\left[ 0,1 \right].$
So if take the intersection of the two intervals obtained from both the factors in case-2 then we get
\[x\in \left( -\infty ,\dfrac{1}{2} \right]\bigcap \left[ 0,1 \right]=\left[ 0,\dfrac{1}{2} \right]\]
So we combine all the values from case-1 and case-2 and get ,
\[x\in \left[ 0,\dfrac{1}{2} \right]\bigcup \left[ 1,\infty \right)\]
So the correct option is B. \[\]
Note:
We can also find the intervals using the wavy-curve method. We take note of the difference between increasing (or non-decreasing) and strictly decreasing function which has the condition ${{h}^{'}}\left( x \right)>0$. The values of $x$ for which ${{h}^{'}}\left( x \right)=0$ are called critical points.
Complete step by step answer:
We know that the function $f\left( x \right)$ is increasing within the interval $\left[ a,b \right]$ then ${{f}^{'}}\left( x \right)\ge 0$ for all $x\in \left[ a,b \right]$
The given real valued functions are $f\left( x \right)={{e}^{x}}-x$and $g\left( x \right)={{x}^{2}}-x$ . Let us assume $g\left( x \right)=u$.The given composite function can be written with substitution $g\left( x \right)=u$ as
\[h\left( x \right)=fog\left( x \right)=f\left( g\left( x \right) \right)=f\left( u \right)={{e}^{u}}-u\]
We put back $u=g\left( x \right)={{x}^{2}}-x$ above and get ,
\[h\left( x \right)={{e}^{{{x}^{2}}-x}}-{{x}^{2}}-x\]
We now differentiate $h\left( x \right)$ with respect to $x$ and get
\[\begin{align}
& {{h}^{'}}\left( x \right)=\left( 2x-1 \right){{e}^{{{x}^{2}}-x}}-\left( 2x-1 \right) \\
& \Rightarrow {{h}^{'}}\left( x \right)=\left( 2x-1 \right)\left( {{e}^{{{x}^{2}}-x}}-1 \right) \\
\end{align}\]
We see that the function $h\left( x \right)$ is increasing in the given domain $R$ then ${{h}^{'}}\left( x \right)>0$. So we have
\[{{h}^{'}}\left( x \right)=\left( 2x-1 \right)\left( {{e}^{{{x}^{2}}-x}}-1 \right)\ge 0\]
We know that the product two numbers is positive if and only if when both of them are positive or both of them are negative. So we get two cases.\[\]
Case-1: If both of them are non-negative , we take the first factor and find the possible values of $x$.
\[\begin{align}
& 2x-1\ge 0 \\
& \Rightarrow x\ge \dfrac{1}{2} \\
& \Rightarrow x\in \left[ \dfrac{1}{2},\infty \right) \\
\end{align}\]
Now we take the second factor and get,
\[\begin{align}
& {{e}^{{{x}^{2}}-x}}-1\ge 0 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\ge 1 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\ge {{e}^{0}} \\
\end{align}\]
We know from the identity that for any $a>1$ and $m,n\in R$, ${{a}^{m}}>{{a}^{n}}\Leftrightarrow m>n$. We use it in above and get
\[\begin{align}
& \Rightarrow {{e}^{{{x}^{2}}-x}}\ge {{e}^{0}} \\
& \Rightarrow {{x}^{2}}-x\ge 0 \\
& \Rightarrow x\left( x-1 \right)\ge 0 \\
& \Rightarrow x\ge 0,x-1\ge 0\text{ or }x\le 0,x-1\le 0 \\
\end{align}\]
So if we consider $x\ge 0,x-1\ge 0$ then the admissible interval for $x$ is $\left[ 0,\infty \right)\bigcap \left[ 1,\infty \right)=\left[ 1,\infty \right)$. If we can also consider $x\le 0,x-1\le 0$ then the admissible interval for $x$ is $\left( -\infty ,0 \right]\bigcap \left( -\infty ,1 \right]=\left( -\infty ,0 \right]$. So all possible of $x$ from the second factor is $\left( -\infty ,0 \right]\bigcup \left[ 1,\infty \right).$
So if take the intersection of the two intervals obtained from both the factors in case-1 then we get
\[x\in \left[ \dfrac{1}{2},\infty \right)\bigcap \left( \left( -\infty ,0 \right]\bigcup \left[ 1,\infty \right) \right)=\left[ 1,\infty \right)\]
Case-2: If both of them are non-positive , we take the first factor and find the possible values of $x$.
\[\begin{align}
& 2x-1\le 0 \\
& \Rightarrow x\le \dfrac{1}{2} \\
& \Rightarrow x\in \left( -\infty ,\dfrac{1}{2} \right] \\
\end{align}\]
Now we take the second factor and get,
\[\begin{align}
& {{e}^{{{x}^{2}}-x}}-1\le 0 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\le 1 \\
& \Rightarrow {{e}^{{{x}^{2}}-x}}\le {{e}^{0}} \\
& \Rightarrow {{x}^{2}}-x\le 0 \\
& \Rightarrow x\left( x-1 \right)\le 0 \\
& \Rightarrow x\le 0,x\ge 1\text{ or x}\ge \text{0,x}\le \text{1} \\
\end{align}\]
We know that if the So if we consider $x\le 0,x\ge 1$ then the admissible interval for $x$ is $\left( -\infty ,0 \right]\bigcap \left[ 1,\infty \right)=\Phi $. If we consider $x\ge 0,x\le 1$ then the admissible interval for $x$ is $\left[ 0,\infty \right)\bigcap \left( -\infty ,1 \right]=\left[ 0,1 \right]$. So all possible of $x$ from the second factor is $\Phi \bigcup \left[ 0,1 \right]=\left[ 0,1 \right].$
So if take the intersection of the two intervals obtained from both the factors in case-2 then we get
\[x\in \left( -\infty ,\dfrac{1}{2} \right]\bigcap \left[ 0,1 \right]=\left[ 0,\dfrac{1}{2} \right]\]
So we combine all the values from case-1 and case-2 and get ,
\[x\in \left[ 0,\dfrac{1}{2} \right]\bigcup \left[ 1,\infty \right)\]
So the correct option is B. \[\]
Note:
We can also find the intervals using the wavy-curve method. We take note of the difference between increasing (or non-decreasing) and strictly decreasing function which has the condition ${{h}^{'}}\left( x \right)>0$. The values of $x$ for which ${{h}^{'}}\left( x \right)=0$ are called critical points.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

