
Let $f\left( x \right)$ be a polynomial of degree 4 having extreme values at x = 1 and x = 2 if $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3$, then $f\left( -1 \right)$ is equal to
$\begin{align}
& a.\dfrac{1}{2} \\
& b.\dfrac{3}{2} \\
& c.\dfrac{5}{2} \\
& d.\dfrac{9}{2} \\
\end{align}$
Answer
575.7k+ views
Hint: First we need to write the four degree polynomial, $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0$ and use the condition of any function which has extreme values at the critical points has $f'\left( x \right)=0$. Also, use the limit rules and subtraction operation between the obtained equations in order to find the values of a and b, and finally substitute x = -1 in the obtained $f\left( x \right)$ to get the required result.
Complete step by step answer:
We know that any function which has extreme values, that are maximum and minimum at the critical points, then we can say that $f'\left( x \right)=0$. From the question, we can say that the function has extreme values at x = and x = 2.
Therefore, for $f'\left( x \right)=0$ at x = 1 and at x = 2, we can say that,
$f'\left( 1 \right)=0$ and $f'\left( 2 \right)=0$
It is given that the polynomial $f\left( x \right)$ has a degree of four.
Therefore, $f\left( x \right)$ will be $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0$.
Hence, $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0.........(i)$
We also have,
$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3$
We know that $\underset{x\to 0}{\mathop{\lim }}\,k=k$, therefore, we can write,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=3-1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=2 \\
\end{align}$
If we take the entire $f\left( x \right)$ and divide it by ${{x}^{2}}$, we get,
$f\left( x \right)=a{{x}^{2}}+bx+c+\dfrac{d}{x}+\dfrac{e}{{{x}^{2}}}=0$
In the above expression, if we apply the limits, we will get a not defined result. Hence, we will only consider,
$f\left( x \right)=a{{x}^{2}}+bx+c$
Therefore, we can say that, d = 0 and e = 0 for the limit value to be finite.
Now,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left[ a{{x}^{2}}+bx+c \right] \\
& =a\left( 0 \right)+b\left( 0 \right)+c \\
\end{align}$
We know that,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=2 \\
& c=2 \\
\end{align}$
Let us substitute the values d = 0, e = 0 and c = 2 in equation (i), so we get,
$f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$
Differentiating the above expression with respect to x, we get,
$f'\left( x \right)=4a{{x}^{3}}+3b{{x}^{2}}+4x$
We have,
$f'\left( 1 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 1 \right)=4a{{\left( 1 \right)}^{3}}+3b{{\left( 1 \right)}^{2}}+4\left( 1 \right)=0 \\
& \Rightarrow 4a+3b+4=0.........(ii) \\
\end{align}$
Also, we know that,
$f'\left( 2 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 2 \right)=4a{{\left( 2 \right)}^{3}}+3b{{\left( 2 \right)}^{2}}+4\left( 2 \right)=0 \\
& \Rightarrow 32a+12b+8=0.........(iii) \\
\end{align}$
Let us solve equations (ii) and (iii). So, we have,
$\begin{align}
& 4a+3b+4=0 \\
& 32a+12b+8=0 \\
\end{align}$
We will subtract the above equations, to get the value of a and b.
So, we will first divide equation (iii) by 4 throughout, so we get,
$8a+3b+2=0.........(iv)$
Now, we will subtract equation (2) from equation (iv), so we get,
$\begin{align}
& \left( 8a+3b+2 \right)-\left( 4a+3b+4 \right)=0 \\
& 8a+3b+2-4a-3b-4=0 \\
& 4a-2=0 \\
& 4a=2 \\
& a=\dfrac{2}{4} \\
& a=\dfrac{1}{2} \\
\end{align}$
On substituting $a=\dfrac{1}{2}$ in equation (ii), we get,
$\begin{align}
& 4\left( \dfrac{1}{2} \right)+3b+4=0 \\
& 2+3b+4=0 \\
& 3b+6=0 \\
& 3b=-6 \\
& b=-\dfrac{6}{3} \\
& b=-2 \\
\end{align}$
Now, let us substitute $a=\dfrac{1}{2},b=-2$ in $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$, so we will get,
$\begin{align}
& f\left( x \right)=\dfrac{1}{2}{{x}^{4}}+\left( -2 \right)b{{x}^{3}}+2{{x}^{2}} \\
& =\dfrac{{{x}^{4}}}{2}-2b{{x}^{3}}+2{{x}^{2}} \\
\end{align}$
We need the value of $f\left( -1 \right)$, therefore, substitute the value x = -1 in the above equation. So, we get,
$\begin{align}
& f\left( -1 \right)=\dfrac{{{\left( -1 \right)}^{4}}}{2}-2{{\left( -1 \right)}^{3}}+2{{\left( -1 \right)}^{2}} \\
& =\dfrac{1}{2}-2\left( -1 \right)+2\left( 1 \right) \\
& =\dfrac{1}{2}+2+2 \\
& =\dfrac{1}{2}+4 \\
& =\dfrac{1+8}{2} \\
& =\dfrac{9}{2} \\
\end{align}$
Therefore, the value of $f\left( -1 \right)=\dfrac{9}{2}$.
So, the correct answer is “Option D”.
Note: In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential in calculus and are used to define continuity, derivatives and integrals.
Complete step by step answer:
We know that any function which has extreme values, that are maximum and minimum at the critical points, then we can say that $f'\left( x \right)=0$. From the question, we can say that the function has extreme values at x = and x = 2.
Therefore, for $f'\left( x \right)=0$ at x = 1 and at x = 2, we can say that,
$f'\left( 1 \right)=0$ and $f'\left( 2 \right)=0$
It is given that the polynomial $f\left( x \right)$ has a degree of four.
Therefore, $f\left( x \right)$ will be $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0$.
Hence, $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0.........(i)$
We also have,
$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3$
We know that $\underset{x\to 0}{\mathop{\lim }}\,k=k$, therefore, we can write,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=3-1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=2 \\
\end{align}$
If we take the entire $f\left( x \right)$ and divide it by ${{x}^{2}}$, we get,
$f\left( x \right)=a{{x}^{2}}+bx+c+\dfrac{d}{x}+\dfrac{e}{{{x}^{2}}}=0$
In the above expression, if we apply the limits, we will get a not defined result. Hence, we will only consider,
$f\left( x \right)=a{{x}^{2}}+bx+c$
Therefore, we can say that, d = 0 and e = 0 for the limit value to be finite.
Now,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left[ a{{x}^{2}}+bx+c \right] \\
& =a\left( 0 \right)+b\left( 0 \right)+c \\
\end{align}$
We know that,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=2 \\
& c=2 \\
\end{align}$
Let us substitute the values d = 0, e = 0 and c = 2 in equation (i), so we get,
$f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$
Differentiating the above expression with respect to x, we get,
$f'\left( x \right)=4a{{x}^{3}}+3b{{x}^{2}}+4x$
We have,
$f'\left( 1 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 1 \right)=4a{{\left( 1 \right)}^{3}}+3b{{\left( 1 \right)}^{2}}+4\left( 1 \right)=0 \\
& \Rightarrow 4a+3b+4=0.........(ii) \\
\end{align}$
Also, we know that,
$f'\left( 2 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 2 \right)=4a{{\left( 2 \right)}^{3}}+3b{{\left( 2 \right)}^{2}}+4\left( 2 \right)=0 \\
& \Rightarrow 32a+12b+8=0.........(iii) \\
\end{align}$
Let us solve equations (ii) and (iii). So, we have,
$\begin{align}
& 4a+3b+4=0 \\
& 32a+12b+8=0 \\
\end{align}$
We will subtract the above equations, to get the value of a and b.
So, we will first divide equation (iii) by 4 throughout, so we get,
$8a+3b+2=0.........(iv)$
Now, we will subtract equation (2) from equation (iv), so we get,
$\begin{align}
& \left( 8a+3b+2 \right)-\left( 4a+3b+4 \right)=0 \\
& 8a+3b+2-4a-3b-4=0 \\
& 4a-2=0 \\
& 4a=2 \\
& a=\dfrac{2}{4} \\
& a=\dfrac{1}{2} \\
\end{align}$
On substituting $a=\dfrac{1}{2}$ in equation (ii), we get,
$\begin{align}
& 4\left( \dfrac{1}{2} \right)+3b+4=0 \\
& 2+3b+4=0 \\
& 3b+6=0 \\
& 3b=-6 \\
& b=-\dfrac{6}{3} \\
& b=-2 \\
\end{align}$
Now, let us substitute $a=\dfrac{1}{2},b=-2$ in $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$, so we will get,
$\begin{align}
& f\left( x \right)=\dfrac{1}{2}{{x}^{4}}+\left( -2 \right)b{{x}^{3}}+2{{x}^{2}} \\
& =\dfrac{{{x}^{4}}}{2}-2b{{x}^{3}}+2{{x}^{2}} \\
\end{align}$
We need the value of $f\left( -1 \right)$, therefore, substitute the value x = -1 in the above equation. So, we get,
$\begin{align}
& f\left( -1 \right)=\dfrac{{{\left( -1 \right)}^{4}}}{2}-2{{\left( -1 \right)}^{3}}+2{{\left( -1 \right)}^{2}} \\
& =\dfrac{1}{2}-2\left( -1 \right)+2\left( 1 \right) \\
& =\dfrac{1}{2}+2+2 \\
& =\dfrac{1}{2}+4 \\
& =\dfrac{1+8}{2} \\
& =\dfrac{9}{2} \\
\end{align}$
Therefore, the value of $f\left( -1 \right)=\dfrac{9}{2}$.
So, the correct answer is “Option D”.
Note: In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential in calculus and are used to define continuity, derivatives and integrals.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

