
Let $f\left( x \right)$ be a polynomial of degree 4 having extreme values at x = 1 and x = 2 if $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3$, then $f\left( -1 \right)$ is equal to
$\begin{align}
& a.\dfrac{1}{2} \\
& b.\dfrac{3}{2} \\
& c.\dfrac{5}{2} \\
& d.\dfrac{9}{2} \\
\end{align}$
Answer
510.3k+ views
Hint: First we need to write the four degree polynomial, $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0$ and use the condition of any function which has extreme values at the critical points has $f'\left( x \right)=0$. Also, use the limit rules and subtraction operation between the obtained equations in order to find the values of a and b, and finally substitute x = -1 in the obtained $f\left( x \right)$ to get the required result.
Complete step by step answer:
We know that any function which has extreme values, that are maximum and minimum at the critical points, then we can say that $f'\left( x \right)=0$. From the question, we can say that the function has extreme values at x = and x = 2.
Therefore, for $f'\left( x \right)=0$ at x = 1 and at x = 2, we can say that,
$f'\left( 1 \right)=0$ and $f'\left( 2 \right)=0$
It is given that the polynomial $f\left( x \right)$ has a degree of four.
Therefore, $f\left( x \right)$ will be $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0$.
Hence, $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0.........(i)$
We also have,
$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3$
We know that $\underset{x\to 0}{\mathop{\lim }}\,k=k$, therefore, we can write,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=3-1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=2 \\
\end{align}$
If we take the entire $f\left( x \right)$ and divide it by ${{x}^{2}}$, we get,
$f\left( x \right)=a{{x}^{2}}+bx+c+\dfrac{d}{x}+\dfrac{e}{{{x}^{2}}}=0$
In the above expression, if we apply the limits, we will get a not defined result. Hence, we will only consider,
$f\left( x \right)=a{{x}^{2}}+bx+c$
Therefore, we can say that, d = 0 and e = 0 for the limit value to be finite.
Now,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left[ a{{x}^{2}}+bx+c \right] \\
& =a\left( 0 \right)+b\left( 0 \right)+c \\
\end{align}$
We know that,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=2 \\
& c=2 \\
\end{align}$
Let us substitute the values d = 0, e = 0 and c = 2 in equation (i), so we get,
$f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$
Differentiating the above expression with respect to x, we get,
$f'\left( x \right)=4a{{x}^{3}}+3b{{x}^{2}}+4x$
We have,
$f'\left( 1 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 1 \right)=4a{{\left( 1 \right)}^{3}}+3b{{\left( 1 \right)}^{2}}+4\left( 1 \right)=0 \\
& \Rightarrow 4a+3b+4=0.........(ii) \\
\end{align}$
Also, we know that,
$f'\left( 2 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 2 \right)=4a{{\left( 2 \right)}^{3}}+3b{{\left( 2 \right)}^{2}}+4\left( 2 \right)=0 \\
& \Rightarrow 32a+12b+8=0.........(iii) \\
\end{align}$
Let us solve equations (ii) and (iii). So, we have,
$\begin{align}
& 4a+3b+4=0 \\
& 32a+12b+8=0 \\
\end{align}$
We will subtract the above equations, to get the value of a and b.
So, we will first divide equation (iii) by 4 throughout, so we get,
$8a+3b+2=0.........(iv)$
Now, we will subtract equation (2) from equation (iv), so we get,
$\begin{align}
& \left( 8a+3b+2 \right)-\left( 4a+3b+4 \right)=0 \\
& 8a+3b+2-4a-3b-4=0 \\
& 4a-2=0 \\
& 4a=2 \\
& a=\dfrac{2}{4} \\
& a=\dfrac{1}{2} \\
\end{align}$
On substituting $a=\dfrac{1}{2}$ in equation (ii), we get,
$\begin{align}
& 4\left( \dfrac{1}{2} \right)+3b+4=0 \\
& 2+3b+4=0 \\
& 3b+6=0 \\
& 3b=-6 \\
& b=-\dfrac{6}{3} \\
& b=-2 \\
\end{align}$
Now, let us substitute $a=\dfrac{1}{2},b=-2$ in $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$, so we will get,
$\begin{align}
& f\left( x \right)=\dfrac{1}{2}{{x}^{4}}+\left( -2 \right)b{{x}^{3}}+2{{x}^{2}} \\
& =\dfrac{{{x}^{4}}}{2}-2b{{x}^{3}}+2{{x}^{2}} \\
\end{align}$
We need the value of $f\left( -1 \right)$, therefore, substitute the value x = -1 in the above equation. So, we get,
$\begin{align}
& f\left( -1 \right)=\dfrac{{{\left( -1 \right)}^{4}}}{2}-2{{\left( -1 \right)}^{3}}+2{{\left( -1 \right)}^{2}} \\
& =\dfrac{1}{2}-2\left( -1 \right)+2\left( 1 \right) \\
& =\dfrac{1}{2}+2+2 \\
& =\dfrac{1}{2}+4 \\
& =\dfrac{1+8}{2} \\
& =\dfrac{9}{2} \\
\end{align}$
Therefore, the value of $f\left( -1 \right)=\dfrac{9}{2}$.
So, the correct answer is “Option D”.
Note: In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential in calculus and are used to define continuity, derivatives and integrals.
Complete step by step answer:
We know that any function which has extreme values, that are maximum and minimum at the critical points, then we can say that $f'\left( x \right)=0$. From the question, we can say that the function has extreme values at x = and x = 2.
Therefore, for $f'\left( x \right)=0$ at x = 1 and at x = 2, we can say that,
$f'\left( 1 \right)=0$ and $f'\left( 2 \right)=0$
It is given that the polynomial $f\left( x \right)$ has a degree of four.
Therefore, $f\left( x \right)$ will be $a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0$.
Hence, $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0.........(i)$
We also have,
$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3$
We know that $\underset{x\to 0}{\mathop{\lim }}\,k=k$, therefore, we can write,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+1=3 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=3-1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=2 \\
\end{align}$
If we take the entire $f\left( x \right)$ and divide it by ${{x}^{2}}$, we get,
$f\left( x \right)=a{{x}^{2}}+bx+c+\dfrac{d}{x}+\dfrac{e}{{{x}^{2}}}=0$
In the above expression, if we apply the limits, we will get a not defined result. Hence, we will only consider,
$f\left( x \right)=a{{x}^{2}}+bx+c$
Therefore, we can say that, d = 0 and e = 0 for the limit value to be finite.
Now,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left[ a{{x}^{2}}+bx+c \right] \\
& =a\left( 0 \right)+b\left( 0 \right)+c \\
\end{align}$
We know that,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=2 \\
& c=2 \\
\end{align}$
Let us substitute the values d = 0, e = 0 and c = 2 in equation (i), so we get,
$f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$
Differentiating the above expression with respect to x, we get,
$f'\left( x \right)=4a{{x}^{3}}+3b{{x}^{2}}+4x$
We have,
$f'\left( 1 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 1 \right)=4a{{\left( 1 \right)}^{3}}+3b{{\left( 1 \right)}^{2}}+4\left( 1 \right)=0 \\
& \Rightarrow 4a+3b+4=0.........(ii) \\
\end{align}$
Also, we know that,
$f'\left( 2 \right)=0$
So, we can write,
$\begin{align}
& f'\left( 2 \right)=4a{{\left( 2 \right)}^{3}}+3b{{\left( 2 \right)}^{2}}+4\left( 2 \right)=0 \\
& \Rightarrow 32a+12b+8=0.........(iii) \\
\end{align}$
Let us solve equations (ii) and (iii). So, we have,
$\begin{align}
& 4a+3b+4=0 \\
& 32a+12b+8=0 \\
\end{align}$
We will subtract the above equations, to get the value of a and b.
So, we will first divide equation (iii) by 4 throughout, so we get,
$8a+3b+2=0.........(iv)$
Now, we will subtract equation (2) from equation (iv), so we get,
$\begin{align}
& \left( 8a+3b+2 \right)-\left( 4a+3b+4 \right)=0 \\
& 8a+3b+2-4a-3b-4=0 \\
& 4a-2=0 \\
& 4a=2 \\
& a=\dfrac{2}{4} \\
& a=\dfrac{1}{2} \\
\end{align}$
On substituting $a=\dfrac{1}{2}$ in equation (ii), we get,
$\begin{align}
& 4\left( \dfrac{1}{2} \right)+3b+4=0 \\
& 2+3b+4=0 \\
& 3b+6=0 \\
& 3b=-6 \\
& b=-\dfrac{6}{3} \\
& b=-2 \\
\end{align}$
Now, let us substitute $a=\dfrac{1}{2},b=-2$ in $f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}$, so we will get,
$\begin{align}
& f\left( x \right)=\dfrac{1}{2}{{x}^{4}}+\left( -2 \right)b{{x}^{3}}+2{{x}^{2}} \\
& =\dfrac{{{x}^{4}}}{2}-2b{{x}^{3}}+2{{x}^{2}} \\
\end{align}$
We need the value of $f\left( -1 \right)$, therefore, substitute the value x = -1 in the above equation. So, we get,
$\begin{align}
& f\left( -1 \right)=\dfrac{{{\left( -1 \right)}^{4}}}{2}-2{{\left( -1 \right)}^{3}}+2{{\left( -1 \right)}^{2}} \\
& =\dfrac{1}{2}-2\left( -1 \right)+2\left( 1 \right) \\
& =\dfrac{1}{2}+2+2 \\
& =\dfrac{1}{2}+4 \\
& =\dfrac{1+8}{2} \\
& =\dfrac{9}{2} \\
\end{align}$
Therefore, the value of $f\left( -1 \right)=\dfrac{9}{2}$.
So, the correct answer is “Option D”.
Note: In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential in calculus and are used to define continuity, derivatives and integrals.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the technique used to separate the components class 11 chemistry CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
