
Let $f\left( t \right)={{e}^{\dfrac{-1}{t}}},t\text{ }>\text{ 0}$ for each positive integer n, ${{P}_{n}}\left( x \right)$ be the polynomial such that $\dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right)={{P}_{n}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}$ for all t>0. If ${{P}_{n+1}}\left( x \right)={{x}^{k}}\left[ {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right]$ then k = ?
Answer
578.7k+ views
Hint: Here, we are given a function $f\left( t \right)={{e}^{\dfrac{-1}{t}}},t\text{ }>\text{ 0}$ and its ${{n}^{th}}$ derivative is also given in the form of ${{P}_{n}}\left( x \right)$ and we have to find value of k if ${{P}_{n+1}}\left( x \right)={{x}^{k}}\left[ {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right]$. For this, we will first take $\dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right)$ and find $\dfrac{{{d}^{n+1}}}{d{{t}^{n+1}}}f\left( t \right)$ by replacing n with n+1. After that, we will convert it into $\dfrac{d}{dt}\left( \dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right) \right)$ form and put value of $\dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right)$ and simplify. After simplifying we will compare the equation with the equation of ${{P}_{n+1}}\left( x \right)$ to find the value of k and conclude our result. We will use chain rule, product rule for performing differentiation. In the chain rule, we take the first term as it is and multiply it by the derivative of the first term. Both terms formed are added to find final differentiation. In the chain rule we first find derivative of ${{P}_{n}}\left( \dfrac{1}{x} \right)$ as ${{P}_{n}}'\left( \dfrac{1}{x} \right)$ and then multiply it by derivative of function inside the given function that is take derivative of $\dfrac{1}{x}$. We will also use the formula as \[\dfrac{{{d}^{n+1}}}{d{{t}^{n+1}}}f\left( t \right)=\dfrac{d}{dt}\left( \dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right) \right)\]
Complete step-by-step answer:
We are given the equation as:
\[\dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right)={{P}_{n}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\cdots \cdots \cdots \cdots \left( 1 \right)\]
Let us now change n to n+1, we get:
\[\dfrac{{{d}^{n+1}}}{d{{t}^{n+1}}}f\left( t \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
We can write as $\dfrac{{{d}^{n+1}}}{d{{t}^{n+1}}}f\left( t \right)$ as $\dfrac{d}{dt}\left( \dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right) \right)$ thus we get:
\[\dfrac{d}{dt}\left( \dfrac{{{d}^{n}}}{d{{t}^{n+1}}}f\left( t \right) \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Now let us solve this equation using the result from (1). Putting value from (1) in above equation we get:
\[\dfrac{d}{dt}\left( {{P}_{n}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Using product rule on the left side of equation we get:
\[{{e}^{\dfrac{-1}{t}}}\cdot \dfrac{d}{dt}{{P}_{n}}\left( \dfrac{1}{t} \right)+{{P}_{n}}\left( \dfrac{1}{t} \right)\dfrac{d}{dt}\left( {{e}^{\dfrac{-1}{t}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Using chain rule on left side we get:
\[{{e}^{\dfrac{-1}{t}}}\cdot {{P}_{n}}'\left( \dfrac{1}{t} \right)\cdot \left( \dfrac{-1}{{{t}^{2}}} \right)+{{P}_{n}}\left( \dfrac{1}{t} \right)\cdot {{e}^{\dfrac{-1}{t}}}\cdot \left( \dfrac{1}{{{t}^{2}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Taking ${{e}^{\dfrac{-1}{t}}}$ common from both sides, we get:
\[{{P}_{n}}'\left( \dfrac{1}{t} \right)\cdot \left( \dfrac{-1}{{{t}^{2}}} \right)+{{P}_{n}}\left( \dfrac{1}{t} \right)\cdot \left( \dfrac{1}{{{t}^{2}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right)\]
Taking $\dfrac{1}{{{t}^{2}}}$ common from left hand side we get:
\[\dfrac{1}{{{t}^{2}}}\left( {{P}_{n}}\left( \dfrac{1}{t} \right)-{{P}_{n}}'\left( \dfrac{1}{t} \right) \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right)\]
Let us change $\dfrac{1}{t}$ by x, hence substituting $\dfrac{1}{t}=x$ in above equation we get:
\[{{x}^{2}}\left( {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right)={{P}_{n+1}}\left( x \right)\cdots \cdots \cdots \cdots \left( 2 \right)\]
We are given equation as:
\[{{x}^{k}}\left[ {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right]={{P}_{n+1}}\left( x \right)\cdots \cdots \cdots \cdots \left( 3 \right)\]
Comparing (2) and (3) we get:
k = 2
Hence, we have found that value of k is 2, if ${{P}_{n+1}}\left( x \right)={{x}^{k}}\left[ {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right]$
Note: Students should be careful while applying chain rule. Don't forget to find derivatives of terms inside the function P(x). Here, P'(x) denotes $\dfrac{d}{dx}P\left( x \right)$. Product rule on two terms is applied as below:
\[\dfrac{d}{dx}\left( u\cdot v \right)=v\cdot \dfrac{du}{dx}+u\cdot \dfrac{dv}{dx}\]
Where, u and v are two functions of x. Students should carefully convert equations from n to n+1. While comparing make sure that all then rest terms are equal.
Complete step-by-step answer:
We are given the equation as:
\[\dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right)={{P}_{n}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\cdots \cdots \cdots \cdots \left( 1 \right)\]
Let us now change n to n+1, we get:
\[\dfrac{{{d}^{n+1}}}{d{{t}^{n+1}}}f\left( t \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
We can write as $\dfrac{{{d}^{n+1}}}{d{{t}^{n+1}}}f\left( t \right)$ as $\dfrac{d}{dt}\left( \dfrac{{{d}^{n}}}{d{{t}^{n}}}f\left( t \right) \right)$ thus we get:
\[\dfrac{d}{dt}\left( \dfrac{{{d}^{n}}}{d{{t}^{n+1}}}f\left( t \right) \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Now let us solve this equation using the result from (1). Putting value from (1) in above equation we get:
\[\dfrac{d}{dt}\left( {{P}_{n}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Using product rule on the left side of equation we get:
\[{{e}^{\dfrac{-1}{t}}}\cdot \dfrac{d}{dt}{{P}_{n}}\left( \dfrac{1}{t} \right)+{{P}_{n}}\left( \dfrac{1}{t} \right)\dfrac{d}{dt}\left( {{e}^{\dfrac{-1}{t}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Using chain rule on left side we get:
\[{{e}^{\dfrac{-1}{t}}}\cdot {{P}_{n}}'\left( \dfrac{1}{t} \right)\cdot \left( \dfrac{-1}{{{t}^{2}}} \right)+{{P}_{n}}\left( \dfrac{1}{t} \right)\cdot {{e}^{\dfrac{-1}{t}}}\cdot \left( \dfrac{1}{{{t}^{2}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right){{e}^{\dfrac{-1}{t}}}\]
Taking ${{e}^{\dfrac{-1}{t}}}$ common from both sides, we get:
\[{{P}_{n}}'\left( \dfrac{1}{t} \right)\cdot \left( \dfrac{-1}{{{t}^{2}}} \right)+{{P}_{n}}\left( \dfrac{1}{t} \right)\cdot \left( \dfrac{1}{{{t}^{2}}} \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right)\]
Taking $\dfrac{1}{{{t}^{2}}}$ common from left hand side we get:
\[\dfrac{1}{{{t}^{2}}}\left( {{P}_{n}}\left( \dfrac{1}{t} \right)-{{P}_{n}}'\left( \dfrac{1}{t} \right) \right)={{P}_{n+1}}\left( \dfrac{1}{t} \right)\]
Let us change $\dfrac{1}{t}$ by x, hence substituting $\dfrac{1}{t}=x$ in above equation we get:
\[{{x}^{2}}\left( {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right)={{P}_{n+1}}\left( x \right)\cdots \cdots \cdots \cdots \left( 2 \right)\]
We are given equation as:
\[{{x}^{k}}\left[ {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right]={{P}_{n+1}}\left( x \right)\cdots \cdots \cdots \cdots \left( 3 \right)\]
Comparing (2) and (3) we get:
k = 2
Hence, we have found that value of k is 2, if ${{P}_{n+1}}\left( x \right)={{x}^{k}}\left[ {{P}_{n}}\left( x \right)-{{P}_{n}}'\left( x \right) \right]$
Note: Students should be careful while applying chain rule. Don't forget to find derivatives of terms inside the function P(x). Here, P'(x) denotes $\dfrac{d}{dx}P\left( x \right)$. Product rule on two terms is applied as below:
\[\dfrac{d}{dx}\left( u\cdot v \right)=v\cdot \dfrac{du}{dx}+u\cdot \dfrac{dv}{dx}\]
Where, u and v are two functions of x. Students should carefully convert equations from n to n+1. While comparing make sure that all then rest terms are equal.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

