
Let $ {{E}_{1}}=\left\{ x\in R:x\ne 1,\dfrac{x}{x-1}=0 \right\}$ and ${{E}_{2}}=\left\{ x\in {{E}_{1}}:{{\sin }^{-1}}\left( {{\log }_{e}}\left( \dfrac{x}{x-1} \right) \right)\text{ is a real number} \right\}$ .(Here the inverse of sine function assumes the value in the interval $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$). Let the function $f:{{E}_{1}}\to R$ is defined by $f\left( x \right)={{\log }_{e}}\dfrac{x}{x-1}$ and $g:{{E}_{1}}\to R$ be defined as $g\left( x \right)={{\sin }^{-1}}\left( {{\log }_{e}}\dfrac{x}{x-1} \right)$ \[\]
LIST-1\[\]
P. The range of $f$ is\[\]
Q. The range of $g$ contains\[\]
R.The domain of $f$contains\[\]
S. The domain of g is \[\]
LIST-II \[\]
1.$\left( -\infty ,\dfrac{1}{e} \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right)$ \[\]
2.$\left( 0,1 \right)$\[\]
3.$\left[ \dfrac{-1}{2},\dfrac{1}{2} \right]$\[\]
4.$\left( -\infty ,0 \right)\bigcup \left( 0,\infty \right)$\[\]
5.$\left( -\infty ,\dfrac{e}{e-1} \right]$\[\]
6.$\left( -\infty ,0 \right)\bigcup \left( \dfrac{1}{2},\dfrac{e}{e-1} \right)$ \[\]
Choose the correct option\[\]
A.$P\to 4,Q\to 2,R\to 1,S\to 1$\[\]
B. $P\to 3,Q\to 3,R\to 6,S\to 5$\[\]
C. $P\to 4,Q\to 2,R\to 1,S\to 6$\[\]
D. $P\to 4,Q\to 3,R\to 6,S\to 5$\[\]
Answer
575.7k+ views
Hint: As ${{E}_{1}}$ and ${{E}_{2}}$ are the domains of the function $f$ and $g$ you can express them in intervals using the conditions inside them. Then you proceed to find ranges of $f$ and $g$ as given within their definition.\[\]
Complete step-by-step answer:
As given in the question ${{E}_{1}}$ is defined as
\[{{E}_{1}}=\left\{ x\in R:x\ne 1,\dfrac{x}{x-1}>0 \right\}\]
So we can proceed with given condition inside the bracket,
\[\begin{align}
& \dfrac{x}{x-1}>0 \\
& \Rightarrow x\in \left( -\infty ,0 \right)\left( 1,\infty \right) \\
\end{align}\]
we obtain that $x$ is contained in the interval $\left( -\infty ,0 \right)\bigcup \left( 1,\infty \right)$ which is the domain of the function $f$. .....(1)
The expression $\dfrac{x}{x-1}$ inside ${{E}_{1}}$ is not defined only at $x=1$ and also $\left| \dfrac{x}{x-1} \right|>0$ . Then $x$ lies in the interval ${{R}^{+}}-\{0\}$. So the range of $f\left( x \right)={{\log }_{e}}\dfrac{x}{x-1}$ is $\left( -\infty ,0 \right)\bigcup \left( 0,\infty \right)$....(2) \[\]
Also we get from the definition of ${{E}_{2}}$
\[{{E}_{2}}=\left\{ x\in {{E}_{1}}:{{\sin }^{-1}}\left( {{\log }_{e}}\left( \dfrac{x}{x-1} \right) \right)\text{ is a real number} \right\}\]
Again we can proceed with given condition inside the bracket with data from the question that inverse of sine is well defined because sine takes the value from the interval$\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. Using the fact that the domain of any sine inverse function is contained in between -1 to 1,
\[\begin{align}
& -1\le {{\log }_{e}}\left( \dfrac{x}{x-1} \right)\le 1 \\
& \Rightarrow \dfrac{1}{e}\le \dfrac{x}{x-1}\le e \\
& \Rightarrow \dfrac{x}{x-1}-\dfrac{1}{e}\ge 0\text{ and }\dfrac{x}{x-1}-e\le 0 \\
& \Rightarrow \dfrac{\left( e-1 \right)x=1}{e\left( x-1 \right)}\ge 0\text{ and }\dfrac{\left( e-1 \right)x-e}{x-1}\ge 0 \\
& \Rightarrow x\in \left( -\infty ,\dfrac{1}{e} \right]\bigcup \left( 1,\infty \right)\text{ and }x\in \left( -\infty ,1 \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right) \\
\end{align}\]
Combing above intervals we obtain that $x$ is contained in the interval $\left( -\infty ,\dfrac{1}{e} \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right)$ which is the domain of the function $g$ ...(3)\[\]
The function $g$ is defined as $g\left( x \right)={{\sin }^{-1}}\left( {{\log }_{e}}\dfrac{x}{x-1} \right)$. The expression ${{\log }_{e}}\dfrac{x}{x-1}$ inside sine inverse function is not defined only at $x=1$ and also the range of the sine inverse function is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. So the range of $g$ is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$..(4) \[\]
From the conclusions (1),(2),(3),(4) and the list-I and list-II, we get that $P\to 4,S\to 1$. The range of $g$ contains only $2.\left( 0,1 \right)$ from list-II and domain of $f$contains only $1.\left( -\infty ,\dfrac{1}{e} \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right)$
Hence the correct choice is $P\to 4,Q\to 2,R\to 1,S\to 1$.\[\]
So, the correct answer is “Option A”.
Note: We need to be careful of inequalities while determining domains and ranges of functions. It is important to not to confuse between the domains of inverse trigonometric functions and note that the base of logarithmic function here is $e$.
Complete step-by-step answer:
As given in the question ${{E}_{1}}$ is defined as
\[{{E}_{1}}=\left\{ x\in R:x\ne 1,\dfrac{x}{x-1}>0 \right\}\]
So we can proceed with given condition inside the bracket,
\[\begin{align}
& \dfrac{x}{x-1}>0 \\
& \Rightarrow x\in \left( -\infty ,0 \right)\left( 1,\infty \right) \\
\end{align}\]
we obtain that $x$ is contained in the interval $\left( -\infty ,0 \right)\bigcup \left( 1,\infty \right)$ which is the domain of the function $f$. .....(1)
The expression $\dfrac{x}{x-1}$ inside ${{E}_{1}}$ is not defined only at $x=1$ and also $\left| \dfrac{x}{x-1} \right|>0$ . Then $x$ lies in the interval ${{R}^{+}}-\{0\}$. So the range of $f\left( x \right)={{\log }_{e}}\dfrac{x}{x-1}$ is $\left( -\infty ,0 \right)\bigcup \left( 0,\infty \right)$....(2) \[\]
Also we get from the definition of ${{E}_{2}}$
\[{{E}_{2}}=\left\{ x\in {{E}_{1}}:{{\sin }^{-1}}\left( {{\log }_{e}}\left( \dfrac{x}{x-1} \right) \right)\text{ is a real number} \right\}\]
Again we can proceed with given condition inside the bracket with data from the question that inverse of sine is well defined because sine takes the value from the interval$\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. Using the fact that the domain of any sine inverse function is contained in between -1 to 1,
\[\begin{align}
& -1\le {{\log }_{e}}\left( \dfrac{x}{x-1} \right)\le 1 \\
& \Rightarrow \dfrac{1}{e}\le \dfrac{x}{x-1}\le e \\
& \Rightarrow \dfrac{x}{x-1}-\dfrac{1}{e}\ge 0\text{ and }\dfrac{x}{x-1}-e\le 0 \\
& \Rightarrow \dfrac{\left( e-1 \right)x=1}{e\left( x-1 \right)}\ge 0\text{ and }\dfrac{\left( e-1 \right)x-e}{x-1}\ge 0 \\
& \Rightarrow x\in \left( -\infty ,\dfrac{1}{e} \right]\bigcup \left( 1,\infty \right)\text{ and }x\in \left( -\infty ,1 \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right) \\
\end{align}\]
Combing above intervals we obtain that $x$ is contained in the interval $\left( -\infty ,\dfrac{1}{e} \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right)$ which is the domain of the function $g$ ...(3)\[\]
The function $g$ is defined as $g\left( x \right)={{\sin }^{-1}}\left( {{\log }_{e}}\dfrac{x}{x-1} \right)$. The expression ${{\log }_{e}}\dfrac{x}{x-1}$ inside sine inverse function is not defined only at $x=1$ and also the range of the sine inverse function is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. So the range of $g$ is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$..(4) \[\]
From the conclusions (1),(2),(3),(4) and the list-I and list-II, we get that $P\to 4,S\to 1$. The range of $g$ contains only $2.\left( 0,1 \right)$ from list-II and domain of $f$contains only $1.\left( -\infty ,\dfrac{1}{e} \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right)$
Hence the correct choice is $P\to 4,Q\to 2,R\to 1,S\to 1$.\[\]
So, the correct answer is “Option A”.
Note: We need to be careful of inequalities while determining domains and ranges of functions. It is important to not to confuse between the domains of inverse trigonometric functions and note that the base of logarithmic function here is $e$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

