
Let $\alpha ,\beta $ be the roots of the equation ${{x}^{2}}-ax+b=0$ and ${{\text{A}}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}.$ Then \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}=\]
$\left( a \right) -a$
$\left( b \right) b$
$\left( c \right) 0$
$\left( d \right) a-b$
Answer
528.9k+ views
Hint: The roots of an equation always satisfy the equation. Both of the given roots $\alpha ,\beta $ always satisfy the given equation. We will apply both of the given roots in the given equation to find the required value.
Complete step by step solution:
Let us suppose that $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}-ax+b=0.$
We know that the roots of an equation always satisfy the equation. So, both $\alpha $ and $\beta $ satisfy the given equation ${{x}^{2}}-ax+b=0.$
Let us apply each of these roots in the equation.
When we apply $\alpha $ in the equation ${{x}^{2}}-ax+b=0,$ we will get
$\Rightarrow {{\alpha }^{2}}-a\alpha +b=0.......\left( 1 \right)$
When we apply $\beta $ in the equation ${{x}^{2}}-ax+b=0,$ we will get
$\Rightarrow {{\beta }^{2}}-a\beta +b=0.......\left( 2 \right)$
It is given that ${{\text{A}}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}.$
So, we can say that ${{\text{A}}_{n+1}}={{\alpha }^{n+1}}+{{\beta }^{n+1}}$ and ${{\text{A}}_{n-1}}={{\alpha }^{n-1}}+{{\beta }^{n-1}}.$
Now, let us substitute these in \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}.\]
So, we will get \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n+1}}+{{\beta }^{n+1}}-a\left( {{\alpha }^{n}}+{{\beta }^{n}} \right)+b\left( {{\alpha }^{n-1}}+{{\beta }^{n-1}} \right).\]
Thus, when we open the brackets we will get,
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n+1}}+{{\beta }^{n+1}}-a{{\alpha }^{n}}-a{{\beta }^{n}}+b{{\alpha }^{n-1}}+b{{\beta }^{n-1}}.\]
In the next step, let us rearrange the equation accordingly to get the following,
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n+1}}-a{{\alpha }^{n}}+b{{\alpha }^{n-1}}+{{\beta }^{n+1}}-a{{\beta }^{n}}+b{{\beta }^{n-1}}.\]
Thus, we will get,
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}=\left( {{\alpha }^{n+1}}-a{{\alpha }^{n}}+b{{\alpha }^{n-1}} \right)+\left( {{\beta }^{n+1}}-a{{\beta }^{n}}+b{{\beta }^{n-1}} \right).\]
Let us take the common factors out from both the summands on the left-hand side.
The term ${{\alpha }^{n-1}}$ is the common factor in the first summand and the term ${{\beta }^{n-1}}$ is the common factor in the second summand.
So, we will get
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n-1}}\left( {{\alpha }^{2}}-a\alpha +b \right)+{{\beta }^{n-1}}\left( {{\beta }^{2}}-a\beta +b \right).\]
In the above obtained equation, we can see that the first and second terms include \[{{\alpha }^{2}}-a\alpha +b\] and \[{{\beta }^{2}}-a\beta +b\] respectively.
By applying the equations $\left( 1 \right)$ and $\left( 2 \right)$ in the above equation, it will become
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n-1}}\left( {{\alpha }^{2}}-a\alpha +b \right)+{{\beta }^{n-1}}\left( {{\beta }^{2}}-a\beta +b \right)={{\alpha }^{n-1}}\cdot 0+{{\beta }^{n-1}}\cdot 0=0.\]
Hence \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}=0.\]
Note: The roots are also called the zeros of the equation. If a value satisfies an equation, then that value is called a root or a zero of the equation. We can use various methods to find the roots of an equation satisfying specific conditions.
Complete step by step solution:
Let us suppose that $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}-ax+b=0.$
We know that the roots of an equation always satisfy the equation. So, both $\alpha $ and $\beta $ satisfy the given equation ${{x}^{2}}-ax+b=0.$
Let us apply each of these roots in the equation.
When we apply $\alpha $ in the equation ${{x}^{2}}-ax+b=0,$ we will get
$\Rightarrow {{\alpha }^{2}}-a\alpha +b=0.......\left( 1 \right)$
When we apply $\beta $ in the equation ${{x}^{2}}-ax+b=0,$ we will get
$\Rightarrow {{\beta }^{2}}-a\beta +b=0.......\left( 2 \right)$
It is given that ${{\text{A}}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}.$
So, we can say that ${{\text{A}}_{n+1}}={{\alpha }^{n+1}}+{{\beta }^{n+1}}$ and ${{\text{A}}_{n-1}}={{\alpha }^{n-1}}+{{\beta }^{n-1}}.$
Now, let us substitute these in \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}.\]
So, we will get \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n+1}}+{{\beta }^{n+1}}-a\left( {{\alpha }^{n}}+{{\beta }^{n}} \right)+b\left( {{\alpha }^{n-1}}+{{\beta }^{n-1}} \right).\]
Thus, when we open the brackets we will get,
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n+1}}+{{\beta }^{n+1}}-a{{\alpha }^{n}}-a{{\beta }^{n}}+b{{\alpha }^{n-1}}+b{{\beta }^{n-1}}.\]
In the next step, let us rearrange the equation accordingly to get the following,
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n+1}}-a{{\alpha }^{n}}+b{{\alpha }^{n-1}}+{{\beta }^{n+1}}-a{{\beta }^{n}}+b{{\beta }^{n-1}}.\]
Thus, we will get,
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}=\left( {{\alpha }^{n+1}}-a{{\alpha }^{n}}+b{{\alpha }^{n-1}} \right)+\left( {{\beta }^{n+1}}-a{{\beta }^{n}}+b{{\beta }^{n-1}} \right).\]
Let us take the common factors out from both the summands on the left-hand side.
The term ${{\alpha }^{n-1}}$ is the common factor in the first summand and the term ${{\beta }^{n-1}}$ is the common factor in the second summand.
So, we will get
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n-1}}\left( {{\alpha }^{2}}-a\alpha +b \right)+{{\beta }^{n-1}}\left( {{\beta }^{2}}-a\beta +b \right).\]
In the above obtained equation, we can see that the first and second terms include \[{{\alpha }^{2}}-a\alpha +b\] and \[{{\beta }^{2}}-a\beta +b\] respectively.
By applying the equations $\left( 1 \right)$ and $\left( 2 \right)$ in the above equation, it will become
\[\Rightarrow {{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}={{\alpha }^{n-1}}\left( {{\alpha }^{2}}-a\alpha +b \right)+{{\beta }^{n-1}}\left( {{\beta }^{2}}-a\beta +b \right)={{\alpha }^{n-1}}\cdot 0+{{\beta }^{n-1}}\cdot 0=0.\]
Hence \[{{\text{A}}_{n+1}}-a{{\text{A}}_{n}}+b{{\text{A}}_{n-1}}=0.\]
Note: The roots are also called the zeros of the equation. If a value satisfies an equation, then that value is called a root or a zero of the equation. We can use various methods to find the roots of an equation satisfying specific conditions.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

