
Let $\alpha $ and $\beta $ be two non-zero real numbers such that $2\left( \cos \beta -\cos \alpha \right)+\cos \alpha \cos \beta =1$. Then which of the following is/are correct?
(a) $\sqrt{3}\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)=0$
(b) $\sqrt{3}\tan \left( \dfrac{\alpha }{2} \right)-\tan \left( \dfrac{\beta }{2} \right)=0$
(c) $\tan \left( \dfrac{\alpha }{2} \right)+\sqrt{3}\tan \left( \dfrac{\beta }{2} \right)=0$
(d) $\tan \left( \dfrac{\alpha }{2} \right)-\sqrt{3}\tan \left( \dfrac{\beta }{2} \right)=0$
Answer
510.6k+ views
Hint: First, before proceeding for this, we must know the following trigonometric formulas to get the answer easily as $\cos \alpha =\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}}$ and $\cos \beta =\dfrac{1-{{\tan }^{2}}\dfrac{\beta }{2}}{1+{{\tan }^{2}}\dfrac{\beta }{2}}$. Then, we can see that the values above are bit large and the expression becomes complex after substitution, so let us suppose as ${{\tan }^{2}}\dfrac{\alpha }{2}=a$ and ${{\tan }^{2}}\dfrac{\beta }{2}=b$. Then, by replacing the value a and b with their original values, we get the relation, we get the final result.
Complete step-by-step answer:
In this question, we are supposed to find the correct option/s when the given condition is $\alpha $and $\beta $be two non-zero real numbers such that $2\left( \cos \beta -\cos \alpha \right)+\cos \alpha \cos \beta =1$.
So, before proceeding for this, we must know the following trigonometric formulas to get the answer easily as:
$\cos \alpha =\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}}$ and $\cos \beta =\dfrac{1-{{\tan }^{2}}\dfrac{\beta }{2}}{1+{{\tan }^{2}}\dfrac{\beta }{2}}$
Now, we can see that the values above are bit large and the expression becomes complex after substitution, so let us suppose as:
${{\tan }^{2}}\dfrac{\alpha }{2}=a$ and ${{\tan }^{2}}\dfrac{\beta }{2}=b$
Then, after substituting the value in the given expression, we get:
$2\left( \dfrac{1-b}{1+b}-\dfrac{1-a}{1+a} \right)+\left( \dfrac{1-a}{1+a} \right)\left( \dfrac{1-b}{1+b} \right)=1$
Then, by solving the above expression, we get:
$\begin{align}
& 2\left( \dfrac{\left( 1-b \right)\left( 1+a \right)-\left( 1-a \right)\left( 1+b \right)}{\left( 1+a \right)\left( 1+b \right)} \right)+\left( \dfrac{1-a}{1+a} \right)\left( \dfrac{1-b}{1+b} \right)=1 \\
& \Rightarrow 2\left( \dfrac{1-b+a-ab-1+a-b+ab}{1+a+b+ab} \right)+\dfrac{1-a-b+ab}{1+a+b+ab}=1 \\
& \Rightarrow 4\left( a-b \right)+1-a-b+ab=1+a+b+ab \\
& \Rightarrow 4a-4b=2b+2a \\
& \Rightarrow 2a=6b \\
& \Rightarrow a=3b \\
\end{align}$
Then, by replacing the value a and b with their original values, we get the relation as:
$\begin{align}
& {{\tan }^{2}}\dfrac{\alpha }{2}=3{{\tan }^{2}}\dfrac{\beta }{2} \\
& \Rightarrow {{\tan }^{2}}\dfrac{\alpha }{2}-3{{\tan }^{2}}\dfrac{\beta }{2}=0 \\
\end{align}$
Now, by solving further, we get:
$\left( \tan \dfrac{\alpha }{2}+\sqrt{3}\tan \dfrac{\beta }{2} \right)\left( \tan \dfrac{\alpha }{2}-\sqrt{3}\tan \dfrac{\beta }{2} \right)=0$
So, we get the two answers possible from the above conditions as:
$\left( \tan \dfrac{\alpha }{2}+\sqrt{3}\tan \dfrac{\beta }{2} \right)=0$ and $\left( \tan \dfrac{\alpha }{2}-\sqrt{3}\tan \dfrac{\beta }{2} \right)=0$
Hence, options (c) and (d) are correct.
Note: Now, to solve these types of questions we need to know some of the basic conversions beforehand so that we can easily proceed in these types of questions. Then, some of the basic conversions are:
${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Moreover, we must be very careful with trigonometric formulas substitution so that we will not proceed in a wrong way.
Complete step-by-step answer:
In this question, we are supposed to find the correct option/s when the given condition is $\alpha $and $\beta $be two non-zero real numbers such that $2\left( \cos \beta -\cos \alpha \right)+\cos \alpha \cos \beta =1$.
So, before proceeding for this, we must know the following trigonometric formulas to get the answer easily as:
$\cos \alpha =\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}}$ and $\cos \beta =\dfrac{1-{{\tan }^{2}}\dfrac{\beta }{2}}{1+{{\tan }^{2}}\dfrac{\beta }{2}}$
Now, we can see that the values above are bit large and the expression becomes complex after substitution, so let us suppose as:
${{\tan }^{2}}\dfrac{\alpha }{2}=a$ and ${{\tan }^{2}}\dfrac{\beta }{2}=b$
Then, after substituting the value in the given expression, we get:
$2\left( \dfrac{1-b}{1+b}-\dfrac{1-a}{1+a} \right)+\left( \dfrac{1-a}{1+a} \right)\left( \dfrac{1-b}{1+b} \right)=1$
Then, by solving the above expression, we get:
$\begin{align}
& 2\left( \dfrac{\left( 1-b \right)\left( 1+a \right)-\left( 1-a \right)\left( 1+b \right)}{\left( 1+a \right)\left( 1+b \right)} \right)+\left( \dfrac{1-a}{1+a} \right)\left( \dfrac{1-b}{1+b} \right)=1 \\
& \Rightarrow 2\left( \dfrac{1-b+a-ab-1+a-b+ab}{1+a+b+ab} \right)+\dfrac{1-a-b+ab}{1+a+b+ab}=1 \\
& \Rightarrow 4\left( a-b \right)+1-a-b+ab=1+a+b+ab \\
& \Rightarrow 4a-4b=2b+2a \\
& \Rightarrow 2a=6b \\
& \Rightarrow a=3b \\
\end{align}$
Then, by replacing the value a and b with their original values, we get the relation as:
$\begin{align}
& {{\tan }^{2}}\dfrac{\alpha }{2}=3{{\tan }^{2}}\dfrac{\beta }{2} \\
& \Rightarrow {{\tan }^{2}}\dfrac{\alpha }{2}-3{{\tan }^{2}}\dfrac{\beta }{2}=0 \\
\end{align}$
Now, by solving further, we get:
$\left( \tan \dfrac{\alpha }{2}+\sqrt{3}\tan \dfrac{\beta }{2} \right)\left( \tan \dfrac{\alpha }{2}-\sqrt{3}\tan \dfrac{\beta }{2} \right)=0$
So, we get the two answers possible from the above conditions as:
$\left( \tan \dfrac{\alpha }{2}+\sqrt{3}\tan \dfrac{\beta }{2} \right)=0$ and $\left( \tan \dfrac{\alpha }{2}-\sqrt{3}\tan \dfrac{\beta }{2} \right)=0$
Hence, options (c) and (d) are correct.
Note: Now, to solve these types of questions we need to know some of the basic conversions beforehand so that we can easily proceed in these types of questions. Then, some of the basic conversions are:
${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Moreover, we must be very careful with trigonometric formulas substitution so that we will not proceed in a wrong way.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Renal portal system of frog is significant in A Quick class 11 biology CBSE
