
Let $A=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]$ . If ${{u}_{1}}$ and ${{u}_{2}}$ are column matrices such that $A{{u}_{1}}=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right]$ and $A{{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]$ then ${{u}_{1}}+{{u}_{2}}$ is equal to.
(a) $\left[ \begin{matrix}
-1 \\
1 \\
0 \\
\end{matrix} \right]$
(b) $\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right]$
(c) $\left[ \begin{matrix}
-1 \\
-1 \\
0 \\
\end{matrix} \right]$
(d) $\left[ \begin{matrix}
-1 \\
1 \\
-1 \\
\end{matrix} \right]$
Answer
602.1k+ views
Hint: For solving this problem we should know how to multiply any two matrices. First, we will assume the unknown matrices and then solve some linear equations to find the elements of these matrices and ultimately we will find ${{u}_{1}}$ and ${{u}_{2}}$ . Then, we will solve for ${{u}_{1}}+{{u}_{2}}$ .
Complete step-by-step answer:
$A=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]$ and $A{{u}_{1}}=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right]$ , $A{{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]$ where ${{u}_{1}}$ and ${{u}_{2}}$ are column matrices.
Now, as $A$ has 3 rows and 3 columns then, order of $A$ is $3\times 3$ .So, ${{u}_{1}}$ and ${{u}_{2}}$ will have 3 rows and only one column. Then, order of ${{u}_{1}}$ and ${{u}_{2}}$ will be $3\times 1$ .
Let, ${{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{1}}=1.............\left( 1 \right) \\
& \Rightarrow 2{{a}_{1}}+{{b}_{1}}=0..............\left( 2 \right) \\
& \Rightarrow 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0................\left( 3 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) in equation (2) to get the value of ${{b}_{1}}$ . Then,
$\begin{align}
& 2{{a}_{1}}+{{b}_{1}}=0 \\
& \Rightarrow 2\times 1+{{b}_{1}}=0 \\
& \Rightarrow {{b}_{1}}=-2..............\left( 4 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) and ${{b}_{1}}=-2$ from (4) to get the value of ${{c}_{1}}$ . Then,
$\begin{align}
& 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0 \\
& \Rightarrow 3\times 1+2\times \left( -2 \right)+{{c}_{1}}=0 \\
& \Rightarrow 3-4+{{c}_{1}}=0 \\
& \Rightarrow {{c}_{1}}=1 \\
\end{align}$
Now, we have the value of ${{a}_{1}}=1$ , ${{b}_{1}}=-2$ and ${{c}_{1}}=1$ . Then,
$\begin{align}
& {{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right].....................\left( 5 \right) \\
\end{align}$
Similarly, we can get ${{u}_{2}}$ . Let ${{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{2}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{2}}=0.............\left( 6 \right) \\
& \Rightarrow 2{{a}_{2}}+{{b}_{2}}=1..............\left( 7 \right) \\
& \Rightarrow 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0................\left( 8 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) in equation (7) to get the value of ${{b}_{2}}$ . Then,
$\begin{align}
& 2{{a}_{2}}+{{b}_{2}}=1 \\
& \Rightarrow 2\times 0+{{b}_{2}}=1 \\
& \Rightarrow {{b}_{2}}=1..............\left( 9 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) and ${{b}_{2}}=1$ from (9) to get the value of ${{c}_{2}}$ . Then,
$\begin{align}
& 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0 \\
& \Rightarrow 3\times 0+2\times 1+{{c}_{2}}=0 \\
& \Rightarrow 0+2+{{c}_{2}}=0 \\
& \Rightarrow {{c}_{2}}=-2 \\
\end{align}$
Now, we have the value of ${{a}_{2}}=0$ , ${{b}_{2}}=1$ and ${{c}_{2}}=-2$ . Then,
$\begin{align}
& {{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right].....................\left( 10 \right) \\
\end{align}$
Now, adding equation (5) and (10). Then,
\[\begin{align}
& {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right]+\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1+0 \\
-2+1 \\
1-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right] \\
\end{align}\]
Thus, we got \[{{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right]\] .
Hence, (b) is the correct option.
Note: We can solve this question by another approach in which first we write $A{{u}_{1}}+A{{u}_{2}}$ by simply adding the given data and then pre multiplying the result with ${{A}^{-1}}$ for which we have to find the matrix ${{A}^{-1}}$ from the given data. After pre multiplying the result with ${{A}^{-1}}$ we will directly get ${{u}_{1}}+{{u}_{2}}$ . Moreover, the student must take care of calculation mistakes while solving the question.
Complete step-by-step answer:
$A=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]$ and $A{{u}_{1}}=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right]$ , $A{{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]$ where ${{u}_{1}}$ and ${{u}_{2}}$ are column matrices.
Now, as $A$ has 3 rows and 3 columns then, order of $A$ is $3\times 3$ .So, ${{u}_{1}}$ and ${{u}_{2}}$ will have 3 rows and only one column. Then, order of ${{u}_{1}}$ and ${{u}_{2}}$ will be $3\times 1$ .
Let, ${{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{1}}=1.............\left( 1 \right) \\
& \Rightarrow 2{{a}_{1}}+{{b}_{1}}=0..............\left( 2 \right) \\
& \Rightarrow 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0................\left( 3 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) in equation (2) to get the value of ${{b}_{1}}$ . Then,
$\begin{align}
& 2{{a}_{1}}+{{b}_{1}}=0 \\
& \Rightarrow 2\times 1+{{b}_{1}}=0 \\
& \Rightarrow {{b}_{1}}=-2..............\left( 4 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) and ${{b}_{1}}=-2$ from (4) to get the value of ${{c}_{1}}$ . Then,
$\begin{align}
& 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0 \\
& \Rightarrow 3\times 1+2\times \left( -2 \right)+{{c}_{1}}=0 \\
& \Rightarrow 3-4+{{c}_{1}}=0 \\
& \Rightarrow {{c}_{1}}=1 \\
\end{align}$
Now, we have the value of ${{a}_{1}}=1$ , ${{b}_{1}}=-2$ and ${{c}_{1}}=1$ . Then,
$\begin{align}
& {{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right].....................\left( 5 \right) \\
\end{align}$
Similarly, we can get ${{u}_{2}}$ . Let ${{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{2}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{2}}=0.............\left( 6 \right) \\
& \Rightarrow 2{{a}_{2}}+{{b}_{2}}=1..............\left( 7 \right) \\
& \Rightarrow 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0................\left( 8 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) in equation (7) to get the value of ${{b}_{2}}$ . Then,
$\begin{align}
& 2{{a}_{2}}+{{b}_{2}}=1 \\
& \Rightarrow 2\times 0+{{b}_{2}}=1 \\
& \Rightarrow {{b}_{2}}=1..............\left( 9 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) and ${{b}_{2}}=1$ from (9) to get the value of ${{c}_{2}}$ . Then,
$\begin{align}
& 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0 \\
& \Rightarrow 3\times 0+2\times 1+{{c}_{2}}=0 \\
& \Rightarrow 0+2+{{c}_{2}}=0 \\
& \Rightarrow {{c}_{2}}=-2 \\
\end{align}$
Now, we have the value of ${{a}_{2}}=0$ , ${{b}_{2}}=1$ and ${{c}_{2}}=-2$ . Then,
$\begin{align}
& {{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right].....................\left( 10 \right) \\
\end{align}$
Now, adding equation (5) and (10). Then,
\[\begin{align}
& {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right]+\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1+0 \\
-2+1 \\
1-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right] \\
\end{align}\]
Thus, we got \[{{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right]\] .
Hence, (b) is the correct option.
Note: We can solve this question by another approach in which first we write $A{{u}_{1}}+A{{u}_{2}}$ by simply adding the given data and then pre multiplying the result with ${{A}^{-1}}$ for which we have to find the matrix ${{A}^{-1}}$ from the given data. After pre multiplying the result with ${{A}^{-1}}$ we will directly get ${{u}_{1}}+{{u}_{2}}$ . Moreover, the student must take care of calculation mistakes while solving the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

