
Let $A=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]$ . If ${{u}_{1}}$ and ${{u}_{2}}$ are column matrices such that $A{{u}_{1}}=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right]$ and $A{{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]$ then ${{u}_{1}}+{{u}_{2}}$ is equal to.
(a) $\left[ \begin{matrix}
-1 \\
1 \\
0 \\
\end{matrix} \right]$
(b) $\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right]$
(c) $\left[ \begin{matrix}
-1 \\
-1 \\
0 \\
\end{matrix} \right]$
(d) $\left[ \begin{matrix}
-1 \\
1 \\
-1 \\
\end{matrix} \right]$
Answer
616.8k+ views
Hint: For solving this problem we should know how to multiply any two matrices. First, we will assume the unknown matrices and then solve some linear equations to find the elements of these matrices and ultimately we will find ${{u}_{1}}$ and ${{u}_{2}}$ . Then, we will solve for ${{u}_{1}}+{{u}_{2}}$ .
Complete step-by-step answer:
$A=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]$ and $A{{u}_{1}}=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right]$ , $A{{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]$ where ${{u}_{1}}$ and ${{u}_{2}}$ are column matrices.
Now, as $A$ has 3 rows and 3 columns then, order of $A$ is $3\times 3$ .So, ${{u}_{1}}$ and ${{u}_{2}}$ will have 3 rows and only one column. Then, order of ${{u}_{1}}$ and ${{u}_{2}}$ will be $3\times 1$ .
Let, ${{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{1}}=1.............\left( 1 \right) \\
& \Rightarrow 2{{a}_{1}}+{{b}_{1}}=0..............\left( 2 \right) \\
& \Rightarrow 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0................\left( 3 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) in equation (2) to get the value of ${{b}_{1}}$ . Then,
$\begin{align}
& 2{{a}_{1}}+{{b}_{1}}=0 \\
& \Rightarrow 2\times 1+{{b}_{1}}=0 \\
& \Rightarrow {{b}_{1}}=-2..............\left( 4 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) and ${{b}_{1}}=-2$ from (4) to get the value of ${{c}_{1}}$ . Then,
$\begin{align}
& 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0 \\
& \Rightarrow 3\times 1+2\times \left( -2 \right)+{{c}_{1}}=0 \\
& \Rightarrow 3-4+{{c}_{1}}=0 \\
& \Rightarrow {{c}_{1}}=1 \\
\end{align}$
Now, we have the value of ${{a}_{1}}=1$ , ${{b}_{1}}=-2$ and ${{c}_{1}}=1$ . Then,
$\begin{align}
& {{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right].....................\left( 5 \right) \\
\end{align}$
Similarly, we can get ${{u}_{2}}$ . Let ${{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{2}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{2}}=0.............\left( 6 \right) \\
& \Rightarrow 2{{a}_{2}}+{{b}_{2}}=1..............\left( 7 \right) \\
& \Rightarrow 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0................\left( 8 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) in equation (7) to get the value of ${{b}_{2}}$ . Then,
$\begin{align}
& 2{{a}_{2}}+{{b}_{2}}=1 \\
& \Rightarrow 2\times 0+{{b}_{2}}=1 \\
& \Rightarrow {{b}_{2}}=1..............\left( 9 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) and ${{b}_{2}}=1$ from (9) to get the value of ${{c}_{2}}$ . Then,
$\begin{align}
& 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0 \\
& \Rightarrow 3\times 0+2\times 1+{{c}_{2}}=0 \\
& \Rightarrow 0+2+{{c}_{2}}=0 \\
& \Rightarrow {{c}_{2}}=-2 \\
\end{align}$
Now, we have the value of ${{a}_{2}}=0$ , ${{b}_{2}}=1$ and ${{c}_{2}}=-2$ . Then,
$\begin{align}
& {{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right].....................\left( 10 \right) \\
\end{align}$
Now, adding equation (5) and (10). Then,
\[\begin{align}
& {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right]+\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1+0 \\
-2+1 \\
1-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right] \\
\end{align}\]
Thus, we got \[{{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right]\] .
Hence, (b) is the correct option.
Note: We can solve this question by another approach in which first we write $A{{u}_{1}}+A{{u}_{2}}$ by simply adding the given data and then pre multiplying the result with ${{A}^{-1}}$ for which we have to find the matrix ${{A}^{-1}}$ from the given data. After pre multiplying the result with ${{A}^{-1}}$ we will directly get ${{u}_{1}}+{{u}_{2}}$ . Moreover, the student must take care of calculation mistakes while solving the question.
Complete step-by-step answer:
$A=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]$ and $A{{u}_{1}}=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right]$ , $A{{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right]$ where ${{u}_{1}}$ and ${{u}_{2}}$ are column matrices.
Now, as $A$ has 3 rows and 3 columns then, order of $A$ is $3\times 3$ .So, ${{u}_{1}}$ and ${{u}_{2}}$ will have 3 rows and only one column. Then, order of ${{u}_{1}}$ and ${{u}_{2}}$ will be $3\times 1$ .
Let, ${{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{1}} \\
2{{a}_{1}}+{{b}_{1}} \\
3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{1}}=1.............\left( 1 \right) \\
& \Rightarrow 2{{a}_{1}}+{{b}_{1}}=0..............\left( 2 \right) \\
& \Rightarrow 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0................\left( 3 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) in equation (2) to get the value of ${{b}_{1}}$ . Then,
$\begin{align}
& 2{{a}_{1}}+{{b}_{1}}=0 \\
& \Rightarrow 2\times 1+{{b}_{1}}=0 \\
& \Rightarrow {{b}_{1}}=-2..............\left( 4 \right) \\
\end{align}$
Now, put ${{a}_{1}}=1$ from (1) and ${{b}_{1}}=-2$ from (4) to get the value of ${{c}_{1}}$ . Then,
$\begin{align}
& 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0 \\
& \Rightarrow 3\times 1+2\times \left( -2 \right)+{{c}_{1}}=0 \\
& \Rightarrow 3-4+{{c}_{1}}=0 \\
& \Rightarrow {{c}_{1}}=1 \\
\end{align}$
Now, we have the value of ${{a}_{1}}=1$ , ${{b}_{1}}=-2$ and ${{c}_{1}}=1$ . Then,
$\begin{align}
& {{u}_{1}}=\left[ \begin{matrix}
{{a}_{1}} \\
{{b}_{1}} \\
{{c}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right].....................\left( 5 \right) \\
\end{align}$
Similarly, we can get ${{u}_{2}}$ . Let ${{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]$ . Then,
$\begin{align}
& A{{u}_{2}}=\left[ \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow A{{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
\end{align}$
Now, in the above equation, we will equate each term of the two matrices. Then,
$\begin{align}
& \left[ \begin{matrix}
{{a}_{2}} \\
2{{a}_{2}}+{{b}_{2}} \\
3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow {{a}_{2}}=0.............\left( 6 \right) \\
& \Rightarrow 2{{a}_{2}}+{{b}_{2}}=1..............\left( 7 \right) \\
& \Rightarrow 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0................\left( 8 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) in equation (7) to get the value of ${{b}_{2}}$ . Then,
$\begin{align}
& 2{{a}_{2}}+{{b}_{2}}=1 \\
& \Rightarrow 2\times 0+{{b}_{2}}=1 \\
& \Rightarrow {{b}_{2}}=1..............\left( 9 \right) \\
\end{align}$
Now, put ${{a}_{2}}=0$ from (6) and ${{b}_{2}}=1$ from (9) to get the value of ${{c}_{2}}$ . Then,
$\begin{align}
& 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0 \\
& \Rightarrow 3\times 0+2\times 1+{{c}_{2}}=0 \\
& \Rightarrow 0+2+{{c}_{2}}=0 \\
& \Rightarrow {{c}_{2}}=-2 \\
\end{align}$
Now, we have the value of ${{a}_{2}}=0$ , ${{b}_{2}}=1$ and ${{c}_{2}}=-2$ . Then,
$\begin{align}
& {{u}_{2}}=\left[ \begin{matrix}
{{a}_{2}} \\
{{b}_{2}} \\
{{c}_{2}} \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{2}}=\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right].....................\left( 10 \right) \\
\end{align}$
Now, adding equation (5) and (10). Then,
\[\begin{align}
& {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-2 \\
1 \\
\end{matrix} \right]+\left[ \begin{matrix}
0 \\
1 \\
-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1+0 \\
-2+1 \\
1-2 \\
\end{matrix} \right] \\
& \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right] \\
\end{align}\]
Thus, we got \[{{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix}
1 \\
-1 \\
-1 \\
\end{matrix} \right]\] .
Hence, (b) is the correct option.
Note: We can solve this question by another approach in which first we write $A{{u}_{1}}+A{{u}_{2}}$ by simply adding the given data and then pre multiplying the result with ${{A}^{-1}}$ for which we have to find the matrix ${{A}^{-1}}$ from the given data. After pre multiplying the result with ${{A}^{-1}}$ we will directly get ${{u}_{1}}+{{u}_{2}}$ . Moreover, the student must take care of calculation mistakes while solving the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

