Answer

Verified

454.8k+ views

Hint: Substitute each of the values given in the domain set \[A\] in the given function. Write the prime factorization of each of the given numbers in the domain and choose the highest possible value of its prime factor. Do this for each element of the domain and the set of values which we get on applying the function to the domain is the range of the given function.

Complete step-by-step answer:

We have a set \[A=\{9,10,11,12,13\}\] and a function acting on this set \[f:A\to N\] defined by \[f\left( n \right)=\] the highest prime factor of \[n\]. We have to find the range of the given function.

We will substitute each element of the domain set \[A\] in the given function and operate the function as given. We will write prime factorization of each element of the domain and choose its largest prime factor. We will add that prime factor of the number to a new set. This new set will be the range of the function \[f\].

We will begin by considering each element of the set \[A\].

We will begin by element \[9\]. \[9\] can be written in terms of its prime factor as \[9=3\times 3\times 1\]. So, the highest prime factor of \[9\] is \[3\]. We will add \[3\] to the range of function \[f\].

We will now evaluate the value of element \[10\] on the function \[f\]. \[10\] can be written in terms of its prime factor as \[10=2\times 5\times 1\]. So, the highest prime factor of \[10\] is \[5\]. We will add \[5\] to the range of function \[f\].

We will now evaluate the value of element \[11\] on the function \[f\]. \[11\] can be written in terms of its prime factor as \[11=11\times 1\]. So, the highest prime factor of \[11\] is \[11\]. We will add \[11\] to the range of function \[f\].

We will now evaluate the value of element \[12\] on the function \[f\]. \[12\] can be written in terms of its prime factor as \[12=2\times 2\times 3\times 1\]. So, the highest prime factor of \[12\] is \[3\]. But since \[3\] is already in the range of the function, we don’t have to add it again.

We will now evaluate the value of element \[13\] on the function \[f\]. \[13\] can be written in terms of its prime factor as \[13=13\times 1\]. So, the highest prime factor of \[13\] is \[13\]. We will add \[13\] to the range of function \[f\].

Hence, the range of \[f\] is the set \[\left\{ 3,5,11,13 \right\}\].

Note: One must keep in mind that we don’t have to add the same element twice to the range of a function. Once an element is added, we shouldn’t add it again. Also, one must clearly know the difference between the terms – domain, range and codomain. Domain of a function is the set of all possible input values for the function. Co domain is the set into which all of the output of the function is constrained to fall. Range of the function is the set of all possible values attained by the function.

Complete step-by-step answer:

We have a set \[A=\{9,10,11,12,13\}\] and a function acting on this set \[f:A\to N\] defined by \[f\left( n \right)=\] the highest prime factor of \[n\]. We have to find the range of the given function.

We will substitute each element of the domain set \[A\] in the given function and operate the function as given. We will write prime factorization of each element of the domain and choose its largest prime factor. We will add that prime factor of the number to a new set. This new set will be the range of the function \[f\].

We will begin by considering each element of the set \[A\].

We will begin by element \[9\]. \[9\] can be written in terms of its prime factor as \[9=3\times 3\times 1\]. So, the highest prime factor of \[9\] is \[3\]. We will add \[3\] to the range of function \[f\].

We will now evaluate the value of element \[10\] on the function \[f\]. \[10\] can be written in terms of its prime factor as \[10=2\times 5\times 1\]. So, the highest prime factor of \[10\] is \[5\]. We will add \[5\] to the range of function \[f\].

We will now evaluate the value of element \[11\] on the function \[f\]. \[11\] can be written in terms of its prime factor as \[11=11\times 1\]. So, the highest prime factor of \[11\] is \[11\]. We will add \[11\] to the range of function \[f\].

We will now evaluate the value of element \[12\] on the function \[f\]. \[12\] can be written in terms of its prime factor as \[12=2\times 2\times 3\times 1\]. So, the highest prime factor of \[12\] is \[3\]. But since \[3\] is already in the range of the function, we don’t have to add it again.

We will now evaluate the value of element \[13\] on the function \[f\]. \[13\] can be written in terms of its prime factor as \[13=13\times 1\]. So, the highest prime factor of \[13\] is \[13\]. We will add \[13\] to the range of function \[f\].

Hence, the range of \[f\] is the set \[\left\{ 3,5,11,13 \right\}\].

Note: One must keep in mind that we don’t have to add the same element twice to the range of a function. Once an element is added, we shouldn’t add it again. Also, one must clearly know the difference between the terms – domain, range and codomain. Domain of a function is the set of all possible input values for the function. Co domain is the set into which all of the output of the function is constrained to fall. Range of the function is the set of all possible values attained by the function.

Recently Updated Pages

Story writing Rohan was a hardworking boy He wanted class 8 english CBSE

The past tense of Bite is Bited A Yes B No class 8 english CBSE

Report the following dialogues Adichie Who made this class 8 english CBSE

Rewrite the following sentence by inserting the appropriate class 8 english CBSE

Comparison between Nelson Mandela and Mahatma Gandhi class 8 social science CBSE

Identify the meaning of the given phraseidiom Clown class 8 english CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One cusec is equal to how many liters class 8 maths CBSE