
Let ${a_1},{a_2},{a_3},{a_4}$ be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$
Then the smallest possible value of the expression ${\left( {{a_1} - {a_2}} \right)^2} + {\left( {{a_2} - {a_3}} \right)^2} + {\left( {{a_3} - {a_4}} \right)^2} + {\left( {{a_4} - {a_1}} \right)^2}$ lies in interval
A. (0, 1.5)
B. (-1.5, 2.5)
C. (2.5, 3)
D. (3, 3.5)
Answer
582.3k+ views
Hint: Start by evaluating the lowest or minimum value of the given expression and accordingly assume the value of individual terms as variables. Substitute this variable in the equation in order to find its value and henceforth the value of all the 4 terms. Based on this value , look for the best suitable option which satisfies the minimum value range.
Complete step-by-step answer:
Given, $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$
When we observe this question carefully then we come to know that the expression ${\left( {{a_1} - {a_2}} \right)^2} + {\left( {{a_2} - {a_3}} \right)^2} + {\left( {{a_3} - {a_4}} \right)^2} + {\left( {{a_4} - {a_1}} \right)^2}$ is always positive . Since all the terms are squared and the square of the negative term will also be positive therefore the minimum value for this equation is 0. And this can only be true, when all have the same values i.e. ${a_1} = {a_2} = {a_3} = {a_4} = a$
On putting the value of ${a_1},{a_2},{a_3},{a_4}$ as a and in the equation $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$ we get the value of
$
{a^2} + {a^2} + {a^2} + {a^2} = 1 \\
\Rightarrow 4{a^2} = 1 \\
\Rightarrow {a^2} = \dfrac{1}{4} \\
\Rightarrow a = \dfrac{1}{2} \\
$
Therefore, we get the values of ${a_1},{a_2},{a_3},{a_4}$ as ${a_1} = {a_2} = {a_3} = {a_4} = a = \dfrac{1}{2}$
So, we found the value of ${a_1},{a_2},{a_3},{a_4}$which is 0.5 and we also came to know that the minimum value of the given equation will be 0, which would lie in the range of (-1.5, 2.5)
So, the correct answer is “Option B”.
Note: Similar questions can be solved using the above procedure. Students must read the question at least twice as many times so we can derive very useful information for a solution , whenever we feel we are stuck. Attention must be given while simplifying or computing as any mistake may lead to wrong answers.
Complete step-by-step answer:
Given, $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$
When we observe this question carefully then we come to know that the expression ${\left( {{a_1} - {a_2}} \right)^2} + {\left( {{a_2} - {a_3}} \right)^2} + {\left( {{a_3} - {a_4}} \right)^2} + {\left( {{a_4} - {a_1}} \right)^2}$ is always positive . Since all the terms are squared and the square of the negative term will also be positive therefore the minimum value for this equation is 0. And this can only be true, when all have the same values i.e. ${a_1} = {a_2} = {a_3} = {a_4} = a$
On putting the value of ${a_1},{a_2},{a_3},{a_4}$ as a and in the equation $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$ we get the value of
$
{a^2} + {a^2} + {a^2} + {a^2} = 1 \\
\Rightarrow 4{a^2} = 1 \\
\Rightarrow {a^2} = \dfrac{1}{4} \\
\Rightarrow a = \dfrac{1}{2} \\
$
Therefore, we get the values of ${a_1},{a_2},{a_3},{a_4}$ as ${a_1} = {a_2} = {a_3} = {a_4} = a = \dfrac{1}{2}$
So, we found the value of ${a_1},{a_2},{a_3},{a_4}$which is 0.5 and we also came to know that the minimum value of the given equation will be 0, which would lie in the range of (-1.5, 2.5)
So, the correct answer is “Option B”.
Note: Similar questions can be solved using the above procedure. Students must read the question at least twice as many times so we can derive very useful information for a solution , whenever we feel we are stuck. Attention must be given while simplifying or computing as any mistake may lead to wrong answers.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

