
Let \[A=\{1,\text{ }2,\text{ }3)\] and \[{{R}_{3}}=\{(1,3),(3,3)\}\].
Find whether or not each of the relations \[{{R}_{3}}\] on A is
(i) reflexive (ii) symmetric (iii) transitive.
Answer
607.5k+ views
Hint: We will use the definitions of reflexive, symmetric and transitive relations to solve this question. A relation is a reflexive relation If every element of set A maps to itself. A relation in a set A is a symmetric relation if \[({{a}_{1}},{{a}_{2}})\in R\] implies that \[({{a}_{2}},{{a}_{1}})\in R\], for all \[{{a}_{1}},{{a}_{2}}\in A\]. A relation in a set A is a transitive relation if \[({{a}_{1}},{{a}_{2}})\in R\] and \[({{a}_{2}},{{a}_{1}})\in R\] implies that \[({{a}_{1}},{{a}_{3}})\in R\] for all \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\in A\].
Complete step-by-step answer:
Before proceeding with the question we should know about the concept of relations and different types of relations that are reflexive, symmetric and transitive relations.
A relation in set A is a subset of \[A\times A\]. Thus, \[A\times A\] is two extreme relations.
A relation in a set A is a reflexive relation if \[(a,a)\in R\], for every \[a\in A\].
A relation in a set A is a symmetric relation if \[({{a}_{1}},{{a}_{2}})\in R\] implies that \[({{a}_{2}},{{a}_{1}})\in R\], for all \[{{a}_{1}},{{a}_{2}}\in A\].
A relation in a set A is a transitive relation if \[({{a}_{1}},{{a}_{2}})\in R\] and \[({{a}_{2}},{{a}_{1}})\in R\] implies that \[({{a}_{1}},{{a}_{3}})\in R\] for all \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\in A\].
A relation in a set A is an equivalence relation if R is reflexive, symmetric and transitive.
It is mentioned in the question that the relation \[{{R}_{3}}=\{(1,3),(3,3)\}\] defined on the set A is {1, 2, 3). So according to the above definition the relation is not reflexive as (1, 1) and (2, 2) is absent.
Also \[(1,3)\in R\] but \[(3,1)\notin R\], so the relation is not symmetric.
Now \[(1,3)\in R\] and also \[(3,3)\in R\] and hence \[(1,3)\in R\]. Hence the relation is transitive.
Hence \[{{R}_{3}}=\{(1,3),(3,3)\}\] is not reflexive, not symmetric but transitive.
Note: Remembering the definition of relations and the types of relations is the key here. We in a hurry can make a mistake in thinking it as a symmetric set but we have to check the definition by taking subsets of the given set A.
Complete step-by-step answer:
Before proceeding with the question we should know about the concept of relations and different types of relations that are reflexive, symmetric and transitive relations.
A relation in set A is a subset of \[A\times A\]. Thus, \[A\times A\] is two extreme relations.
A relation in a set A is a reflexive relation if \[(a,a)\in R\], for every \[a\in A\].
A relation in a set A is a symmetric relation if \[({{a}_{1}},{{a}_{2}})\in R\] implies that \[({{a}_{2}},{{a}_{1}})\in R\], for all \[{{a}_{1}},{{a}_{2}}\in A\].
A relation in a set A is a transitive relation if \[({{a}_{1}},{{a}_{2}})\in R\] and \[({{a}_{2}},{{a}_{1}})\in R\] implies that \[({{a}_{1}},{{a}_{3}})\in R\] for all \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\in A\].
A relation in a set A is an equivalence relation if R is reflexive, symmetric and transitive.
It is mentioned in the question that the relation \[{{R}_{3}}=\{(1,3),(3,3)\}\] defined on the set A is {1, 2, 3). So according to the above definition the relation is not reflexive as (1, 1) and (2, 2) is absent.
Also \[(1,3)\in R\] but \[(3,1)\notin R\], so the relation is not symmetric.
Now \[(1,3)\in R\] and also \[(3,3)\in R\] and hence \[(1,3)\in R\]. Hence the relation is transitive.
Hence \[{{R}_{3}}=\{(1,3),(3,3)\}\] is not reflexive, not symmetric but transitive.
Note: Remembering the definition of relations and the types of relations is the key here. We in a hurry can make a mistake in thinking it as a symmetric set but we have to check the definition by taking subsets of the given set A.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which Country is Called "The Land of Festivals"?

What is Contraception List its four different methods class 10 biology CBSE

