
Let a random variable X have a binomial distribution with mean 8 and variance 4. If \[P(x\le 2)=\dfrac{k}{{{2}^{16}}}\], then k is equal to?
(A) 17
(B) 1
(C) 121
(D) 137
Answer
511.5k+ views
Hint: We solve this problem by considering our random variable as Binomial with parameters n, p and we use the formula that $Mean=np$ and $Variance=npq$ and solve them to find the values of n, p and q. Then we use the formula for probability \[P(X=x)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\] and find the probability for all x less than or equal to 2 and compare the obtained result with given value and find the required value.
Complete step-by-step answer:
We are given that the random variable X follows the Binomial Distribution with mean 8 and variance 4.
Now let us consider the concept of Binomial Distribution.
A random variable X is said to follow Binomial distribution if its probability can be given as,
$P\left( X=x \right)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\text{ }q=1-p\text{ for }x=1,2,3,......,n$
If X follows a Binomial distribution with parameters n and p, then mean and variance of X are
$\begin{align}
& Mean=np \\
& Variance=npq \\
\end{align}$
So, using this formula we can write as
\[np=8..........(1)\]
\[npq=4............(2)\]
Now, let us divide equation (2) with equation (1). Then we get,
\[\begin{align}
& \Rightarrow \dfrac{npq}{np}=\dfrac{4}{8} \\
& \Rightarrow q=\dfrac{1}{2} \\
\end{align}\]
From the definition of Binomial distribution, we can write,
\[\Rightarrow p+q=1\]
\[\Rightarrow p=1-q\]
\[\Rightarrow p=1-\dfrac{1}{2}\]
\[\Rightarrow p=\dfrac{1}{2}\]
So, our random variable X has parameters as \[p=\dfrac{1}{2}\] and \[q=\dfrac{1}{2}\].
Now let us substitute these values in equation (1). Then we get,
\[\begin{align}
& \Rightarrow np=8 \\
& \Rightarrow n\left( \dfrac{1}{2} \right)=8 \\
& \Rightarrow n=8\times 2 \\
& \Rightarrow n=16 \\
\end{align}\]
We know,
\[P(x\le 2)=P(x=0)+P(x=1)+P(x=2)\]
As we know, the probability of a Binomial Distribution at \[X=x\] is denoted by \[P(X=x)\]is
\[P(X=x)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\]
\[\Rightarrow P(x\le 2)=P(x=0)+P(x=1)+P(x=2)\]
\[\Rightarrow P(x\le 2)={}^{16}{{C}_{0}}{{p}^{0}}{{q}^{16-0}}+{}^{16}{{C}_{1}}{{p}^{1}}{{q}^{16-1}}+{}^{16}{{C}_{2}}{{p}^{2}}{{q}^{16-2}}\]
\[\Rightarrow P(x\le 2)={}^{16}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{0}}{{\left( \dfrac{1}{2} \right)}^{16}}+{}^{16}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{1}}{{\left( \dfrac{1}{2} \right)}^{15}}+{}^{16}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{14}}\]
\[\Rightarrow P(x\le 2)={}^{16}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{16}}+{}^{16}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{16}}+{}^{16}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{16}}\]
\[\Rightarrow P(x\le 2)={{\left( \dfrac{1}{2} \right)}^{16}}\left( {}^{16}{{C}_{0}}+{}^{16}{{C}_{1}}+{}^{16}{{C}_{2}} \right)\]
We know
\[{}^{n}{{C}_{x}}=\dfrac{n!}{(n-r)!r!}\]
\[\Rightarrow P(x\le 2)={{\left( \dfrac{1}{2} \right)}^{16}}\left( \dfrac{16!}{(16-0)!0!}+\dfrac{16!}{(16-1)!1!}+\dfrac{16!}{(16-2)!2!} \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( \dfrac{16!}{16!}+\dfrac{16!}{15!1!}+\dfrac{16!}{14!2!} \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 1+16+\dfrac{16\times 15}{2} \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 1+16+8\times 15 \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 1+16+120 \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 137 \right)\]
We are given that \[P(x\le 2)=\dfrac{k}{{{2}^{16}}}\]. So, let us compare both the values. Then we get,
\[\left( \dfrac{1}{{{2}^{16}}} \right)\left( 137 \right)=\dfrac{k}{{{2}^{16}}}\]
\[\Rightarrow k=137\]
Hence the value of k is 137.
Therefore, Option D is correct.
Note: There is a possibility of one making a mistake by taking the probability of a binomial distribution as \[P(X=x)={}^{n}{{P}_{x}}{{p}^{x}}{{q}^{n-x}}\]. But the formula is \[P(X=x)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\]. Here \[{}^{n}{{C}_{x}}=\dfrac{n!}{(n-r)!r!}\] and \[{}^{n}{{P}_{x}}=\dfrac{n!}{(n-r)!}\]. So, one should remember the difference between permutations and combinations.
Complete step-by-step answer:
We are given that the random variable X follows the Binomial Distribution with mean 8 and variance 4.
Now let us consider the concept of Binomial Distribution.
A random variable X is said to follow Binomial distribution if its probability can be given as,
$P\left( X=x \right)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\text{ }q=1-p\text{ for }x=1,2,3,......,n$
If X follows a Binomial distribution with parameters n and p, then mean and variance of X are
$\begin{align}
& Mean=np \\
& Variance=npq \\
\end{align}$
So, using this formula we can write as
\[np=8..........(1)\]
\[npq=4............(2)\]
Now, let us divide equation (2) with equation (1). Then we get,
\[\begin{align}
& \Rightarrow \dfrac{npq}{np}=\dfrac{4}{8} \\
& \Rightarrow q=\dfrac{1}{2} \\
\end{align}\]
From the definition of Binomial distribution, we can write,
\[\Rightarrow p+q=1\]
\[\Rightarrow p=1-q\]
\[\Rightarrow p=1-\dfrac{1}{2}\]
\[\Rightarrow p=\dfrac{1}{2}\]
So, our random variable X has parameters as \[p=\dfrac{1}{2}\] and \[q=\dfrac{1}{2}\].
Now let us substitute these values in equation (1). Then we get,
\[\begin{align}
& \Rightarrow np=8 \\
& \Rightarrow n\left( \dfrac{1}{2} \right)=8 \\
& \Rightarrow n=8\times 2 \\
& \Rightarrow n=16 \\
\end{align}\]
We know,
\[P(x\le 2)=P(x=0)+P(x=1)+P(x=2)\]
As we know, the probability of a Binomial Distribution at \[X=x\] is denoted by \[P(X=x)\]is
\[P(X=x)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\]
\[\Rightarrow P(x\le 2)=P(x=0)+P(x=1)+P(x=2)\]
\[\Rightarrow P(x\le 2)={}^{16}{{C}_{0}}{{p}^{0}}{{q}^{16-0}}+{}^{16}{{C}_{1}}{{p}^{1}}{{q}^{16-1}}+{}^{16}{{C}_{2}}{{p}^{2}}{{q}^{16-2}}\]
\[\Rightarrow P(x\le 2)={}^{16}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{0}}{{\left( \dfrac{1}{2} \right)}^{16}}+{}^{16}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{1}}{{\left( \dfrac{1}{2} \right)}^{15}}+{}^{16}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{14}}\]
\[\Rightarrow P(x\le 2)={}^{16}{{C}_{0}}{{\left( \dfrac{1}{2} \right)}^{16}}+{}^{16}{{C}_{1}}{{\left( \dfrac{1}{2} \right)}^{16}}+{}^{16}{{C}_{2}}{{\left( \dfrac{1}{2} \right)}^{16}}\]
\[\Rightarrow P(x\le 2)={{\left( \dfrac{1}{2} \right)}^{16}}\left( {}^{16}{{C}_{0}}+{}^{16}{{C}_{1}}+{}^{16}{{C}_{2}} \right)\]
We know
\[{}^{n}{{C}_{x}}=\dfrac{n!}{(n-r)!r!}\]
\[\Rightarrow P(x\le 2)={{\left( \dfrac{1}{2} \right)}^{16}}\left( \dfrac{16!}{(16-0)!0!}+\dfrac{16!}{(16-1)!1!}+\dfrac{16!}{(16-2)!2!} \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( \dfrac{16!}{16!}+\dfrac{16!}{15!1!}+\dfrac{16!}{14!2!} \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 1+16+\dfrac{16\times 15}{2} \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 1+16+8\times 15 \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 1+16+120 \right)\]
\[\Rightarrow P(x\le 2)=\left( \dfrac{1}{{{2}^{16}}} \right)\left( 137 \right)\]
We are given that \[P(x\le 2)=\dfrac{k}{{{2}^{16}}}\]. So, let us compare both the values. Then we get,
\[\left( \dfrac{1}{{{2}^{16}}} \right)\left( 137 \right)=\dfrac{k}{{{2}^{16}}}\]
\[\Rightarrow k=137\]
Hence the value of k is 137.
Therefore, Option D is correct.
Note: There is a possibility of one making a mistake by taking the probability of a binomial distribution as \[P(X=x)={}^{n}{{P}_{x}}{{p}^{x}}{{q}^{n-x}}\]. But the formula is \[P(X=x)={}^{n}{{C}_{x}}{{p}^{x}}{{q}^{n-x}}\]. Here \[{}^{n}{{C}_{x}}=\dfrac{n!}{(n-r)!r!}\] and \[{}^{n}{{P}_{x}}=\dfrac{n!}{(n-r)!}\]. So, one should remember the difference between permutations and combinations.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
