
Let a, b, c be real and $a{{x}^{2}}+bx+c=0$ has two real roots, $\alpha $ and $\beta $ where $\alpha <-1$ and $\beta >1$, then show that $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y$ and find $y$.
Answer
571.2k+ views
Hint: We will assume the roots $\alpha $ and $\beta $ as $\alpha +\lambda =-1$ and $\beta =1+\mu $ $\left\{ \lambda ,\mu >0 \right\}$. We have the relation between the roots of the quadratic equation and the coefficients of the quadratic equation i.e. $\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$. From the values of $\alpha $ and $\beta $, known relationships between them we will calculate the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$. From the obtained value we will conclude the value of $y$.
Complete step-by-step solution
Given that,
Let $a$, $b$, $c$ be real and $a{{x}^{2}}+bx+c=0$ has two real roots, $\alpha $ and $\beta $
Let the values of $\alpha $ and $\beta $ are $\alpha +\lambda =-1$ , $\beta =1+\mu $ $\because \alpha <-1,\beta >1$ where $\left\{ \lambda ,\mu >0 \right\}$.
We have relation between the roots of the quadratic equation and the coefficients of the quadratic equation as
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Now the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ can be calculated as
$\dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right|$
The values of $\alpha $ from $\alpha +\lambda =-1$ is $\alpha =-1-\lambda $. Substituting the values of $\alpha $ and $\beta $ in the above equation then we will get
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\left( -1-\lambda \right)\left( 1+\mu \right)+\left| -1-\lambda +1+\mu \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\left| \mu -\lambda \right| \\
\end{align}$
If $\mu >\lambda $ then
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\mu -\lambda \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\lambda -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\lambda +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Now comparing the above expression with the given expression $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y$, then the value of $y$ is equal to $1$.
Note: We can also take the assumption that $\lambda >\mu $, then the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is given by
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\lambda -\mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\mu -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\mu +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Complete step-by-step solution
Given that,
Let $a$, $b$, $c$ be real and $a{{x}^{2}}+bx+c=0$ has two real roots, $\alpha $ and $\beta $
Let the values of $\alpha $ and $\beta $ are $\alpha +\lambda =-1$ , $\beta =1+\mu $ $\because \alpha <-1,\beta >1$ where $\left\{ \lambda ,\mu >0 \right\}$.
We have relation between the roots of the quadratic equation and the coefficients of the quadratic equation as
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Now the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ can be calculated as
$\dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right|$
The values of $\alpha $ from $\alpha +\lambda =-1$ is $\alpha =-1-\lambda $. Substituting the values of $\alpha $ and $\beta $ in the above equation then we will get
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\left( -1-\lambda \right)\left( 1+\mu \right)+\left| -1-\lambda +1+\mu \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\left| \mu -\lambda \right| \\
\end{align}$
If $\mu >\lambda $ then
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\mu -\lambda \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\lambda -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\lambda +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Now comparing the above expression with the given expression $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y$, then the value of $y$ is equal to $1$.
Note: We can also take the assumption that $\lambda >\mu $, then the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is given by
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\lambda -\mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\mu -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\mu +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

