
Let a, b, c be real and $a{{x}^{2}}+bx+c=0$ has two real roots, $\alpha $ and $\beta $ where $\alpha <-1$ and $\beta >1$, then show that $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y$ and find $y$.
Answer
556.2k+ views
Hint: We will assume the roots $\alpha $ and $\beta $ as $\alpha +\lambda =-1$ and $\beta =1+\mu $ $\left\{ \lambda ,\mu >0 \right\}$. We have the relation between the roots of the quadratic equation and the coefficients of the quadratic equation i.e. $\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$. From the values of $\alpha $ and $\beta $, known relationships between them we will calculate the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$. From the obtained value we will conclude the value of $y$.
Complete step-by-step solution
Given that,
Let $a$, $b$, $c$ be real and $a{{x}^{2}}+bx+c=0$ has two real roots, $\alpha $ and $\beta $
Let the values of $\alpha $ and $\beta $ are $\alpha +\lambda =-1$ , $\beta =1+\mu $ $\because \alpha <-1,\beta >1$ where $\left\{ \lambda ,\mu >0 \right\}$.
We have relation between the roots of the quadratic equation and the coefficients of the quadratic equation as
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Now the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ can be calculated as
$\dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right|$
The values of $\alpha $ from $\alpha +\lambda =-1$ is $\alpha =-1-\lambda $. Substituting the values of $\alpha $ and $\beta $ in the above equation then we will get
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\left( -1-\lambda \right)\left( 1+\mu \right)+\left| -1-\lambda +1+\mu \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\left| \mu -\lambda \right| \\
\end{align}$
If $\mu >\lambda $ then
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\mu -\lambda \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\lambda -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\lambda +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Now comparing the above expression with the given expression $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y$, then the value of $y$ is equal to $1$.
Note: We can also take the assumption that $\lambda >\mu $, then the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is given by
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\lambda -\mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\mu -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\mu +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Complete step-by-step solution
Given that,
Let $a$, $b$, $c$ be real and $a{{x}^{2}}+bx+c=0$ has two real roots, $\alpha $ and $\beta $
Let the values of $\alpha $ and $\beta $ are $\alpha +\lambda =-1$ , $\beta =1+\mu $ $\because \alpha <-1,\beta >1$ where $\left\{ \lambda ,\mu >0 \right\}$.
We have relation between the roots of the quadratic equation and the coefficients of the quadratic equation as
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Now the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ can be calculated as
$\dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right|$
The values of $\alpha $ from $\alpha +\lambda =-1$ is $\alpha =-1-\lambda $. Substituting the values of $\alpha $ and $\beta $ in the above equation then we will get
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\alpha \beta +\left| \alpha +\beta \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=\left( -1-\lambda \right)\left( 1+\mu \right)+\left| -1-\lambda +1+\mu \right| \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\left| \mu -\lambda \right| \\
\end{align}$
If $\mu >\lambda $ then
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\mu -\lambda \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\lambda -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\lambda +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Now comparing the above expression with the given expression $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-y$, then the value of $y$ is equal to $1$.
Note: We can also take the assumption that $\lambda >\mu $, then the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is given by
$\begin{align}
& \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\mu -\lambda -\lambda \mu +\lambda -\mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-2\mu -\lambda \mu \\
& \Rightarrow \dfrac{c}{a}+\left| \dfrac{b}{a} \right|=-1-\left( 2\mu +\lambda \mu \right) \\
\end{align}$
For any value of $\mu $ and $\lambda $ the value of $\dfrac{c}{a}+\left| \dfrac{b}{a} \right|$ is always less than $-1$, mathematically
$\therefore \dfrac{c}{a}+\left| \dfrac{b}{a} \right|<-1$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

