
Length of the subtangent at $\left( {{x}_{l}},{{y}_{l}} \right)$ on ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ , $m,n>0$ , is.
(a) $\dfrac{n}{m}{{x}_{l}}$
(b) $\dfrac{m}{n}\left| {{x}_{l}} \right|$
(c) $\dfrac{n}{m}\left| {{y}_{l}} \right|$
(d) $\dfrac{n}{m}\left| {{x}_{l}} \right|$
Answer
615k+ views
Hint:For solving this question first we will simplify the given equation by taking log on both sides then we will differentiate it with respect to $x$ and calculate the value of $\dfrac{dy}{dx}$ . Then, we will directly find the length of the subtangent from its formula.
Complete step-by-step answer:
Given: We have to find the length of subtangent at $\left( {{x}_{l}},{{y}_{l}} \right)$ on ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ , $m,n>0$ .
Now, we know that length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ . First, we will solve for $\dfrac{dy}{dx}$ then we will find the length of subtangent using ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
The equation of the curve is ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ . Now, take log to the base $e$ on both sides. Then,
$\begin{align}
& {{x}^{n}}{{y}^{m}}={{a}^{m+n}} \\
& \Rightarrow \log \left( {{x}^{n}}{{y}^{m}} \right)=\log \left( {{a}^{m+n}} \right) \\
& \Rightarrow \log \left( {{x}^{n}} \right)+\log \left( {{y}^{m}} \right)=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=( m+n )\log a \\
\end{align}$
Now, in the above equation $a$ is a constant so, differentiating the above equation with respect to $x$ . Then,
$
\Rightarrow \dfrac{d\left( n\log x \right)}{dx}+\dfrac{d\left( m\log y \right)}{dx}=\dfrac{d\left( \left( m+n \right)\log a \right)}{dx} \\
$
We know that $(\dfrac{d\left( log x \right)}{dx}={\dfrac{1}{x}})$
Then we can write,
$ \Rightarrow \dfrac{n}{x}+\dfrac{m}{y}\dfrac{dy}{dx}=0 \\
\Rightarrow \dfrac{m}{y}\dfrac{dy}{dx}=-\dfrac{n}{x} \\
\Rightarrow \dfrac{y}{m}\dfrac{dx}{dy}=-\dfrac{x}{n} \\
\Rightarrow y\dfrac{dx}{dy}=-\dfrac{m}{n}x \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\left| -\dfrac{m}{n}x \right| \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\dfrac{m}{n}\left| x \right| \\
$
Now, from the above calculation, we can say that value of ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ for the given curve will be value of $\dfrac{m}{n}\left| x \right|$ at $\left( {{x}_{l}},{{y}_{l}} \right)$ . Then, length of subtangent $=\dfrac{m}{n}\left| {{x}_{l}} \right|$ .
Hence, option (b) is the correct option.
Note: Here if the student directly differentiates the given equation then more calculation will be there. And the student should not confuse the formula of subtangent with the formula of subnormal. Moreover, the student should proceed stepwise and avoid calculation mistakes while solving to get the correct answer.
Complete step-by-step answer:
Given: We have to find the length of subtangent at $\left( {{x}_{l}},{{y}_{l}} \right)$ on ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ , $m,n>0$ .
Now, we know that length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ . First, we will solve for $\dfrac{dy}{dx}$ then we will find the length of subtangent using ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
The equation of the curve is ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ . Now, take log to the base $e$ on both sides. Then,
$\begin{align}
& {{x}^{n}}{{y}^{m}}={{a}^{m+n}} \\
& \Rightarrow \log \left( {{x}^{n}}{{y}^{m}} \right)=\log \left( {{a}^{m+n}} \right) \\
& \Rightarrow \log \left( {{x}^{n}} \right)+\log \left( {{y}^{m}} \right)=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=( m+n )\log a \\
\end{align}$
Now, in the above equation $a$ is a constant so, differentiating the above equation with respect to $x$ . Then,
$
\Rightarrow \dfrac{d\left( n\log x \right)}{dx}+\dfrac{d\left( m\log y \right)}{dx}=\dfrac{d\left( \left( m+n \right)\log a \right)}{dx} \\
$
We know that $(\dfrac{d\left( log x \right)}{dx}={\dfrac{1}{x}})$
Then we can write,
$ \Rightarrow \dfrac{n}{x}+\dfrac{m}{y}\dfrac{dy}{dx}=0 \\
\Rightarrow \dfrac{m}{y}\dfrac{dy}{dx}=-\dfrac{n}{x} \\
\Rightarrow \dfrac{y}{m}\dfrac{dx}{dy}=-\dfrac{x}{n} \\
\Rightarrow y\dfrac{dx}{dy}=-\dfrac{m}{n}x \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\left| -\dfrac{m}{n}x \right| \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\dfrac{m}{n}\left| x \right| \\
$
Now, from the above calculation, we can say that value of ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ for the given curve will be value of $\dfrac{m}{n}\left| x \right|$ at $\left( {{x}_{l}},{{y}_{l}} \right)$ . Then, length of subtangent $=\dfrac{m}{n}\left| {{x}_{l}} \right|$ .
Hence, option (b) is the correct option.
Note: Here if the student directly differentiates the given equation then more calculation will be there. And the student should not confuse the formula of subtangent with the formula of subnormal. Moreover, the student should proceed stepwise and avoid calculation mistakes while solving to get the correct answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

