
Length of the subtangent at $\left( {{x}_{l}},{{y}_{l}} \right)$ on ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ , $m,n>0$ , is.
(a) $\dfrac{n}{m}{{x}_{l}}$
(b) $\dfrac{m}{n}\left| {{x}_{l}} \right|$
(c) $\dfrac{n}{m}\left| {{y}_{l}} \right|$
(d) $\dfrac{n}{m}\left| {{x}_{l}} \right|$
Answer
600.6k+ views
Hint:For solving this question first we will simplify the given equation by taking log on both sides then we will differentiate it with respect to $x$ and calculate the value of $\dfrac{dy}{dx}$ . Then, we will directly find the length of the subtangent from its formula.
Complete step-by-step answer:
Given: We have to find the length of subtangent at $\left( {{x}_{l}},{{y}_{l}} \right)$ on ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ , $m,n>0$ .
Now, we know that length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ . First, we will solve for $\dfrac{dy}{dx}$ then we will find the length of subtangent using ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
The equation of the curve is ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ . Now, take log to the base $e$ on both sides. Then,
$\begin{align}
& {{x}^{n}}{{y}^{m}}={{a}^{m+n}} \\
& \Rightarrow \log \left( {{x}^{n}}{{y}^{m}} \right)=\log \left( {{a}^{m+n}} \right) \\
& \Rightarrow \log \left( {{x}^{n}} \right)+\log \left( {{y}^{m}} \right)=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=( m+n )\log a \\
\end{align}$
Now, in the above equation $a$ is a constant so, differentiating the above equation with respect to $x$ . Then,
$
\Rightarrow \dfrac{d\left( n\log x \right)}{dx}+\dfrac{d\left( m\log y \right)}{dx}=\dfrac{d\left( \left( m+n \right)\log a \right)}{dx} \\
$
We know that $(\dfrac{d\left( log x \right)}{dx}={\dfrac{1}{x}})$
Then we can write,
$ \Rightarrow \dfrac{n}{x}+\dfrac{m}{y}\dfrac{dy}{dx}=0 \\
\Rightarrow \dfrac{m}{y}\dfrac{dy}{dx}=-\dfrac{n}{x} \\
\Rightarrow \dfrac{y}{m}\dfrac{dx}{dy}=-\dfrac{x}{n} \\
\Rightarrow y\dfrac{dx}{dy}=-\dfrac{m}{n}x \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\left| -\dfrac{m}{n}x \right| \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\dfrac{m}{n}\left| x \right| \\
$
Now, from the above calculation, we can say that value of ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ for the given curve will be value of $\dfrac{m}{n}\left| x \right|$ at $\left( {{x}_{l}},{{y}_{l}} \right)$ . Then, length of subtangent $=\dfrac{m}{n}\left| {{x}_{l}} \right|$ .
Hence, option (b) is the correct option.
Note: Here if the student directly differentiates the given equation then more calculation will be there. And the student should not confuse the formula of subtangent with the formula of subnormal. Moreover, the student should proceed stepwise and avoid calculation mistakes while solving to get the correct answer.
Complete step-by-step answer:
Given: We have to find the length of subtangent at $\left( {{x}_{l}},{{y}_{l}} \right)$ on ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ , $m,n>0$ .
Now, we know that length of subtangent for any curve $y=f\left( x \right)$ at a point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ . First, we will solve for $\dfrac{dy}{dx}$ then we will find the length of subtangent using ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ .
The equation of the curve is ${{x}^{n}}{{y}^{m}}={{a}^{m+n}}$ . Now, take log to the base $e$ on both sides. Then,
$\begin{align}
& {{x}^{n}}{{y}^{m}}={{a}^{m+n}} \\
& \Rightarrow \log \left( {{x}^{n}}{{y}^{m}} \right)=\log \left( {{a}^{m+n}} \right) \\
& \Rightarrow \log \left( {{x}^{n}} \right)+\log \left( {{y}^{m}} \right)=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=\left( m+n \right)\log a \\
& \Rightarrow n\log x+m\log y=( m+n )\log a \\
\end{align}$
Now, in the above equation $a$ is a constant so, differentiating the above equation with respect to $x$ . Then,
$
\Rightarrow \dfrac{d\left( n\log x \right)}{dx}+\dfrac{d\left( m\log y \right)}{dx}=\dfrac{d\left( \left( m+n \right)\log a \right)}{dx} \\
$
We know that $(\dfrac{d\left( log x \right)}{dx}={\dfrac{1}{x}})$
Then we can write,
$ \Rightarrow \dfrac{n}{x}+\dfrac{m}{y}\dfrac{dy}{dx}=0 \\
\Rightarrow \dfrac{m}{y}\dfrac{dy}{dx}=-\dfrac{n}{x} \\
\Rightarrow \dfrac{y}{m}\dfrac{dx}{dy}=-\dfrac{x}{n} \\
\Rightarrow y\dfrac{dx}{dy}=-\dfrac{m}{n}x \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\left| -\dfrac{m}{n}x \right| \\
\Rightarrow \left| y\dfrac{dx}{dy} \right|=\dfrac{m}{n}\left| x \right| \\
$
Now, from the above calculation, we can say that value of ${{\left| y\dfrac{dx}{dy} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$ for the given curve will be value of $\dfrac{m}{n}\left| x \right|$ at $\left( {{x}_{l}},{{y}_{l}} \right)$ . Then, length of subtangent $=\dfrac{m}{n}\left| {{x}_{l}} \right|$ .
Hence, option (b) is the correct option.
Note: Here if the student directly differentiates the given equation then more calculation will be there. And the student should not confuse the formula of subtangent with the formula of subnormal. Moreover, the student should proceed stepwise and avoid calculation mistakes while solving to get the correct answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

