
$ \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... $ is equal to
(A) 4
(B) $ 4n $
(C) $ 4\left( {n + 1} \right) $
(D) $ 2\left( {n + 2} \right) $
Answer
582.3k+ views
Hint: This question is based on the special cases of the Binomial Theorem. In this question the expanded form of the binomial expression is given and we have to find its value and write it in the simplest form possible. So, to simplify this expansion we can assume the smallest value of $ n $ and substitute into the expression, then the value obtained would be also in the smallest form possible.
Complete step-by-step answer:
The expression given is –
$ \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... $
To simplify this expression, we have to assume a smallest value for the variable n.
Let us assume, the smallest value of n is $ n = 1 $ , then substituting this value of n into the expression we get,
\[\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... = \left( {1 + 2} \right){}^1{C_0}{2^{1 + 1}} - \left( {1 + 1} \right){}^1{C_1}{2^1}\]
By substituting $ n = 1 $ into the expression the terms after the second term of the expression are neglected because according to the binomial expansion the number of terms in the expansion for $ n = 1 $ should be $ 1 + 1 = 2 $ . So, we consider only the first two terms of the expansion and rest are neglected.
\[
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = \left( 3 \right)\dfrac{{1!}}{{\left( {1 - 0} \right)! \times 0!}}{2^2} - \left( 2 \right)\dfrac{{1!}}{{\left( {1 - 1} \right)! \times 1!}}{2^1}\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = \left( {3 \times 4} \right)1 - \left( {2 \times 2} \right)1\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 12 - 4
\]
So, for $ n = 1 $ the value of the expression is $ 12 - 4 = 8 $
Now we can write the answer $ 8 $ in the following way –
$
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 8\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4 \times 2\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4 \times \left( {1 + 1} \right)
$
And we know the value of $ n $ is $ n = 1 $ so substituting $ n $ in place of 1, we get,
$
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4 \times \left( {n + 1} \right)\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4\left( {n + 1} \right)
$
This is the required value of the expression in the simplest terms containing $ n $ .
Therefore, the value of the expression $ \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... $ is equal to $ 4\left( {n + 1} \right) $ and the correct option is –
(C) $ 4\left( {n + 1} \right) $
So, the correct answer is “Option C”.
Note: The number of terms in the expansion of the binomial is defined by the value of the exponent of the binomial. For example, if the value of the exponent of a binomial is 2 then the number of terms in the binomial expansion would be $ 2 + 1 = 3. $
Also, for the binomial $ {\left( {1 + x} \right)^2} $ the value of the exponent is 2 so the number of terms in the binomial expansion would be $ 2 + 1 = 3 $ .
Complete step-by-step answer:
The expression given is –
$ \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... $
To simplify this expression, we have to assume a smallest value for the variable n.
Let us assume, the smallest value of n is $ n = 1 $ , then substituting this value of n into the expression we get,
\[\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... = \left( {1 + 2} \right){}^1{C_0}{2^{1 + 1}} - \left( {1 + 1} \right){}^1{C_1}{2^1}\]
By substituting $ n = 1 $ into the expression the terms after the second term of the expression are neglected because according to the binomial expansion the number of terms in the expansion for $ n = 1 $ should be $ 1 + 1 = 2 $ . So, we consider only the first two terms of the expansion and rest are neglected.
\[
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = \left( 3 \right)\dfrac{{1!}}{{\left( {1 - 0} \right)! \times 0!}}{2^2} - \left( 2 \right)\dfrac{{1!}}{{\left( {1 - 1} \right)! \times 1!}}{2^1}\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = \left( {3 \times 4} \right)1 - \left( {2 \times 2} \right)1\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 12 - 4
\]
So, for $ n = 1 $ the value of the expression is $ 12 - 4 = 8 $
Now we can write the answer $ 8 $ in the following way –
$
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 8\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4 \times 2\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4 \times \left( {1 + 1} \right)
$
And we know the value of $ n $ is $ n = 1 $ so substituting $ n $ in place of 1, we get,
$
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4 \times \left( {n + 1} \right)\\
\Rightarrow \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} = 4\left( {n + 1} \right)
$
This is the required value of the expression in the simplest terms containing $ n $ .
Therefore, the value of the expression $ \left( {n + 2} \right){}^n{C_0}{2^{n + 1}} - \left( {n + 1} \right){}^n{C_1}{2^n} + n{}^n{C_2}{2^{n - 1}} - ... $ is equal to $ 4\left( {n + 1} \right) $ and the correct option is –
(C) $ 4\left( {n + 1} \right) $
So, the correct answer is “Option C”.
Note: The number of terms in the expansion of the binomial is defined by the value of the exponent of the binomial. For example, if the value of the exponent of a binomial is 2 then the number of terms in the binomial expansion would be $ 2 + 1 = 3. $
Also, for the binomial $ {\left( {1 + x} \right)^2} $ the value of the exponent is 2 so the number of terms in the binomial expansion would be $ 2 + 1 = 3 $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

