
\[\left| {\begin{array}{*{20}{c}}
{{{\left( {1 + a} \right)}^2}}&{{{\left( {1 + 2a} \right)}^2}}&{{{\left( {1 + 3a} \right)}^2}} \\
{{{\left( {2 + a} \right)}^2}}&{{{\left( {2 + 2a} \right)}^2}}&{{{\left( {2 + 3a} \right)}^2}} \\
{{{\left( {3 + a} \right)}^2}}&{{{\left( {3 + 2a} \right)}^2}}&{{{\left( {3 + 3a} \right)}^2}}
\end{array}} \right| = 648a?\]
$a = ?$
1)$7$
2) $8$
3)$9$
4) $10$
Answer
507.6k+ views
Hint: We have to find the value of ‘a’ firstly we have to solve the determinant from the left hand side. Since it is very complex to expand along the row and column of the matrix. So we have to apply elementary operations on rows and columns of the matrix. This will reduce the matrix into the simplest form. Now it will be easy to find the determinant. In last we equate this with right hand side and find the value of ‘a’
Complete step-by-step answer:
We have given determinant with variable ‘a’ and we have to find this variable.
Firstly we will take left hand side.
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{{{\left( {1 + a} \right)}^2}}&{{{\left( {1 + 2a} \right)}^2}}&{{{\left( {1 + 3a} \right)}^2}} \\
{{{\left( {2 + a} \right)}^2}}&{{{\left( {2 + 2a} \right)}^2}}&{{{\left( {2 + 3a} \right)}^2}} \\
{{{\left( {3 + a} \right)}^2}}&{{{\left( {3 + 2a} \right)}^2}}&{{{\left( {3 + 3a} \right)}^2}}
\end{array}} \right|\]
We apply formula ${\left( {1 + a} \right)^2} = {x^2} + {y^2} + 2xy$ each element
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{4 + {a^2} + 4a}&{4 + 4{a^2} + 8a}&{4 + 9{a^2} + 12a} \\
{9 + {a^2} + 6a}&{9 + 4{a^2} + 12a}&{9 + 9{a^2} + 18a}
\end{array}} \right|\]
Now we apply row operations on Row $3$and row $2$.
Operation on ${R_2}$ is ${R_2} \to {R_2} - {R_1}$
And operation on ${R_3}$is ${R_3} \to {R_3} - {R_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
{8 + 4a}&{8 + 8a}&{8 + 12a}
\end{array}} \right|\]
Now we apply operation on ${R_3}$as ${R_3} \to {R_3} - 2{R_2}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
2&2&2
\end{array}} \right|\]
Applying operation of ${C_2}$ and ${C_3}$ as
${C_2} \to {C_2} - {C_1}$ and ${C_3} \to {C_3} - {C_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{3{a^2} + 2a}&{8{a^2} + 4a} \\
{3 + 2a}&{2a}&{4a} \\
2&0&0
\end{array}} \right|\]
Now expanding L.H.S. along ${R_3}$
L.H.S. $ = 2\left[ {4a(3{a^2} + 2a) - 2a(8{a^2} + 4a)} \right]$
\[ = 2\left[ {12{a^3} + 8{a^2} - 16{a^3} - 8{a^2})} \right]\]
\[ = 2\left[ { - 4{a^2}} \right]\]
\[ = - 8{a^3}\]
L.H.S. \[ = - 8{a^3}\]
We have given R.H.S. \[ = - 648a\]
Therefore \[ - 8{a^3} = 648a\]
$\Rightarrow$ \[8{a^2} = 648\]
$\Rightarrow$ \[{a^2} = \dfrac{{648}}{8}\]
$\Rightarrow$ \[{a^2} = 81\]
$\Rightarrow$ \[{a^2} = \sqrt {81} \]
$\Rightarrow$ \[{a^2} = \pm 9\]
So option $\left( 3 \right)$ is correct
Note: Matrix is a set of numbers arranged in row and column. So as to form a rectangular array. The numbers are called elements or entries of the matrix. It has various applications in various branches of mathematics.
Operations on matrix: There are three kinds of elementary matrix operations. Interchange two rows or two columns. Multiply each element in column/row by non zero element and add the result to another row.
Complete step-by-step answer:
We have given determinant with variable ‘a’ and we have to find this variable.
Firstly we will take left hand side.
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{{{\left( {1 + a} \right)}^2}}&{{{\left( {1 + 2a} \right)}^2}}&{{{\left( {1 + 3a} \right)}^2}} \\
{{{\left( {2 + a} \right)}^2}}&{{{\left( {2 + 2a} \right)}^2}}&{{{\left( {2 + 3a} \right)}^2}} \\
{{{\left( {3 + a} \right)}^2}}&{{{\left( {3 + 2a} \right)}^2}}&{{{\left( {3 + 3a} \right)}^2}}
\end{array}} \right|\]
We apply formula ${\left( {1 + a} \right)^2} = {x^2} + {y^2} + 2xy$ each element
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{4 + {a^2} + 4a}&{4 + 4{a^2} + 8a}&{4 + 9{a^2} + 12a} \\
{9 + {a^2} + 6a}&{9 + 4{a^2} + 12a}&{9 + 9{a^2} + 18a}
\end{array}} \right|\]
Now we apply row operations on Row $3$and row $2$.
Operation on ${R_2}$ is ${R_2} \to {R_2} - {R_1}$
And operation on ${R_3}$is ${R_3} \to {R_3} - {R_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
{8 + 4a}&{8 + 8a}&{8 + 12a}
\end{array}} \right|\]
Now we apply operation on ${R_3}$as ${R_3} \to {R_3} - 2{R_2}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
2&2&2
\end{array}} \right|\]
Applying operation of ${C_2}$ and ${C_3}$ as
${C_2} \to {C_2} - {C_1}$ and ${C_3} \to {C_3} - {C_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{3{a^2} + 2a}&{8{a^2} + 4a} \\
{3 + 2a}&{2a}&{4a} \\
2&0&0
\end{array}} \right|\]
Now expanding L.H.S. along ${R_3}$
L.H.S. $ = 2\left[ {4a(3{a^2} + 2a) - 2a(8{a^2} + 4a)} \right]$
\[ = 2\left[ {12{a^3} + 8{a^2} - 16{a^3} - 8{a^2})} \right]\]
\[ = 2\left[ { - 4{a^2}} \right]\]
\[ = - 8{a^3}\]
L.H.S. \[ = - 8{a^3}\]
We have given R.H.S. \[ = - 648a\]
Therefore \[ - 8{a^3} = 648a\]
$\Rightarrow$ \[8{a^2} = 648\]
$\Rightarrow$ \[{a^2} = \dfrac{{648}}{8}\]
$\Rightarrow$ \[{a^2} = 81\]
$\Rightarrow$ \[{a^2} = \sqrt {81} \]
$\Rightarrow$ \[{a^2} = \pm 9\]
So option $\left( 3 \right)$ is correct
Note: Matrix is a set of numbers arranged in row and column. So as to form a rectangular array. The numbers are called elements or entries of the matrix. It has various applications in various branches of mathematics.
Operations on matrix: There are three kinds of elementary matrix operations. Interchange two rows or two columns. Multiply each element in column/row by non zero element and add the result to another row.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
