
\[\left| {\begin{array}{*{20}{c}}
{{{\left( {1 + a} \right)}^2}}&{{{\left( {1 + 2a} \right)}^2}}&{{{\left( {1 + 3a} \right)}^2}} \\
{{{\left( {2 + a} \right)}^2}}&{{{\left( {2 + 2a} \right)}^2}}&{{{\left( {2 + 3a} \right)}^2}} \\
{{{\left( {3 + a} \right)}^2}}&{{{\left( {3 + 2a} \right)}^2}}&{{{\left( {3 + 3a} \right)}^2}}
\end{array}} \right| = 648a?\]
$a = ?$
1)$7$
2) $8$
3)$9$
4) $10$
Answer
569.1k+ views
Hint: We have to find the value of ‘a’ firstly we have to solve the determinant from the left hand side. Since it is very complex to expand along the row and column of the matrix. So we have to apply elementary operations on rows and columns of the matrix. This will reduce the matrix into the simplest form. Now it will be easy to find the determinant. In last we equate this with right hand side and find the value of ‘a’
Complete step-by-step answer:
We have given determinant with variable ‘a’ and we have to find this variable.
Firstly we will take left hand side.
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{{{\left( {1 + a} \right)}^2}}&{{{\left( {1 + 2a} \right)}^2}}&{{{\left( {1 + 3a} \right)}^2}} \\
{{{\left( {2 + a} \right)}^2}}&{{{\left( {2 + 2a} \right)}^2}}&{{{\left( {2 + 3a} \right)}^2}} \\
{{{\left( {3 + a} \right)}^2}}&{{{\left( {3 + 2a} \right)}^2}}&{{{\left( {3 + 3a} \right)}^2}}
\end{array}} \right|\]
We apply formula ${\left( {1 + a} \right)^2} = {x^2} + {y^2} + 2xy$ each element
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{4 + {a^2} + 4a}&{4 + 4{a^2} + 8a}&{4 + 9{a^2} + 12a} \\
{9 + {a^2} + 6a}&{9 + 4{a^2} + 12a}&{9 + 9{a^2} + 18a}
\end{array}} \right|\]
Now we apply row operations on Row $3$and row $2$.
Operation on ${R_2}$ is ${R_2} \to {R_2} - {R_1}$
And operation on ${R_3}$is ${R_3} \to {R_3} - {R_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
{8 + 4a}&{8 + 8a}&{8 + 12a}
\end{array}} \right|\]
Now we apply operation on ${R_3}$as ${R_3} \to {R_3} - 2{R_2}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
2&2&2
\end{array}} \right|\]
Applying operation of ${C_2}$ and ${C_3}$ as
${C_2} \to {C_2} - {C_1}$ and ${C_3} \to {C_3} - {C_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{3{a^2} + 2a}&{8{a^2} + 4a} \\
{3 + 2a}&{2a}&{4a} \\
2&0&0
\end{array}} \right|\]
Now expanding L.H.S. along ${R_3}$
L.H.S. $ = 2\left[ {4a(3{a^2} + 2a) - 2a(8{a^2} + 4a)} \right]$
\[ = 2\left[ {12{a^3} + 8{a^2} - 16{a^3} - 8{a^2})} \right]\]
\[ = 2\left[ { - 4{a^2}} \right]\]
\[ = - 8{a^3}\]
L.H.S. \[ = - 8{a^3}\]
We have given R.H.S. \[ = - 648a\]
Therefore \[ - 8{a^3} = 648a\]
$\Rightarrow$ \[8{a^2} = 648\]
$\Rightarrow$ \[{a^2} = \dfrac{{648}}{8}\]
$\Rightarrow$ \[{a^2} = 81\]
$\Rightarrow$ \[{a^2} = \sqrt {81} \]
$\Rightarrow$ \[{a^2} = \pm 9\]
So option $\left( 3 \right)$ is correct
Note: Matrix is a set of numbers arranged in row and column. So as to form a rectangular array. The numbers are called elements or entries of the matrix. It has various applications in various branches of mathematics.
Operations on matrix: There are three kinds of elementary matrix operations. Interchange two rows or two columns. Multiply each element in column/row by non zero element and add the result to another row.
Complete step-by-step answer:
We have given determinant with variable ‘a’ and we have to find this variable.
Firstly we will take left hand side.
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{{{\left( {1 + a} \right)}^2}}&{{{\left( {1 + 2a} \right)}^2}}&{{{\left( {1 + 3a} \right)}^2}} \\
{{{\left( {2 + a} \right)}^2}}&{{{\left( {2 + 2a} \right)}^2}}&{{{\left( {2 + 3a} \right)}^2}} \\
{{{\left( {3 + a} \right)}^2}}&{{{\left( {3 + 2a} \right)}^2}}&{{{\left( {3 + 3a} \right)}^2}}
\end{array}} \right|\]
We apply formula ${\left( {1 + a} \right)^2} = {x^2} + {y^2} + 2xy$ each element
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{4 + {a^2} + 4a}&{4 + 4{a^2} + 8a}&{4 + 9{a^2} + 12a} \\
{9 + {a^2} + 6a}&{9 + 4{a^2} + 12a}&{9 + 9{a^2} + 18a}
\end{array}} \right|\]
Now we apply row operations on Row $3$and row $2$.
Operation on ${R_2}$ is ${R_2} \to {R_2} - {R_1}$
And operation on ${R_3}$is ${R_3} \to {R_3} - {R_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
{8 + 4a}&{8 + 8a}&{8 + 12a}
\end{array}} \right|\]
Now we apply operation on ${R_3}$as ${R_3} \to {R_3} - 2{R_2}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{1 + 4{a^2} + 4a}&{1 + 9{a^2} + 6a} \\
{3 + 2a}&{3 + 4a}&{3 + 6a} \\
2&2&2
\end{array}} \right|\]
Applying operation of ${C_2}$ and ${C_3}$ as
${C_2} \to {C_2} - {C_1}$ and ${C_3} \to {C_3} - {C_1}$
L.H.S. \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&{3{a^2} + 2a}&{8{a^2} + 4a} \\
{3 + 2a}&{2a}&{4a} \\
2&0&0
\end{array}} \right|\]
Now expanding L.H.S. along ${R_3}$
L.H.S. $ = 2\left[ {4a(3{a^2} + 2a) - 2a(8{a^2} + 4a)} \right]$
\[ = 2\left[ {12{a^3} + 8{a^2} - 16{a^3} - 8{a^2})} \right]\]
\[ = 2\left[ { - 4{a^2}} \right]\]
\[ = - 8{a^3}\]
L.H.S. \[ = - 8{a^3}\]
We have given R.H.S. \[ = - 648a\]
Therefore \[ - 8{a^3} = 648a\]
$\Rightarrow$ \[8{a^2} = 648\]
$\Rightarrow$ \[{a^2} = \dfrac{{648}}{8}\]
$\Rightarrow$ \[{a^2} = 81\]
$\Rightarrow$ \[{a^2} = \sqrt {81} \]
$\Rightarrow$ \[{a^2} = \pm 9\]
So option $\left( 3 \right)$ is correct
Note: Matrix is a set of numbers arranged in row and column. So as to form a rectangular array. The numbers are called elements or entries of the matrix. It has various applications in various branches of mathematics.
Operations on matrix: There are three kinds of elementary matrix operations. Interchange two rows or two columns. Multiply each element in column/row by non zero element and add the result to another row.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

