
What is the lattice energy of Calcium Chloride?
Answer
499.2k+ views
Hint :The Born-Haber cycle is a very useful method in calculating the lattice enthalpy of any compound. To find out the lattice enthalpy we need the total ionization energy when the compound is prepared from its constituent atoms or ions. We also need sublimation energy, dissociation energy, ionization energy and electron affinity values.
Complete Step By Step Answer:
Let us first consider the Born-Haber Cycle of $ CaC{l_2} $ . Only by seeing this we can calculate the lattice energy of the compound.
By the above diagram we can say that
Standard enthalpy of formation ( $ \Delta H_f^o $ ) = lattice energy + (2 $ \times $ Electron affinity for chlorine) + Bond Energy of Chlorine gas + first and second ionisation energy of calcium + Sublimation energy of Calcium solid.
$ \Delta {H_{{\text{sublimation}}}}{\text{ }} = {\text{ }}121{\text{ }}kJ $
1st Ionization Energy of Ca = 589.5 $ kJ $
2nd Ionization Energy of Ca = 1145 $ kJ $
Bond Energy of Cl2 = 242.7 $ kJ $
Electron Affinity for chlorine = 2 $ \times $ (−349 $ kJ $ )
Standard Enthalpy of Formation of CaCl2 (s) = −795 $ kJ $
We can substitute these values in the equation to find out the lattice energy
$ \Rightarrow - 795{\text{ }}kJ{\text{ }} = {\text{ Lattice Energy }} + {\text{ }}2 \times \left( { - 349{\text{ }}kJ} \right){\text{ }} + {\text{ }}242.4{\text{ }}kJ{\text{ }} + {\text{ }}1145{\text{ }}kJ{\text{ }} + {\text{ }}589.5{\text{ }}kJ{\text{ }} + {\text{ }}121{\text{ }}kJ $
$ \Rightarrow {\text{Lattice Energy = }} - 795{\text{ }}kJ - 2 \times \left( { - 349{\text{ }}kJ} \right) - 242.4{\text{ }}kJ - 1145{\text{ }}kJ - 589.5{\text{ }}kJ - 121{\text{ }}kJ $
$ \Rightarrow {\text{Lattice Energy}} = - 2195.2{\text{ }}kJ/mol $
This is how we find the lattice energy of calcium chloride by using Born-Haber cycle.
Note :
We can also use another method to find out the lattice energy of a compound
This method is by using the Born-Lande Equation, given by
$ Lattice{\text{ }}Energy = \dfrac{{{N_A} \times M \times {z^ + } \times {z^ - } \times {e^2}}}{{4\pi {\varepsilon _o}r}}\left( {1 - \dfrac{1}{n}} \right) $
Where $ {N_A} $ is the Avogadro number
$ M $ is the Madelung Constant
$ {z^ + },{z^ - } $ are the charges of cation and anion respectively
$ e $ is the electronic charge
$ {\varepsilon _o} $ is permittivity of free space
$ r $ is the radial distance
$ n $ is the born exponent.
Complete Step By Step Answer:
Let us first consider the Born-Haber Cycle of $ CaC{l_2} $ . Only by seeing this we can calculate the lattice energy of the compound.
By the above diagram we can say that
Standard enthalpy of formation ( $ \Delta H_f^o $ ) = lattice energy + (2 $ \times $ Electron affinity for chlorine) + Bond Energy of Chlorine gas + first and second ionisation energy of calcium + Sublimation energy of Calcium solid.
$ \Delta {H_{{\text{sublimation}}}}{\text{ }} = {\text{ }}121{\text{ }}kJ $
1st Ionization Energy of Ca = 589.5 $ kJ $
2nd Ionization Energy of Ca = 1145 $ kJ $
Bond Energy of Cl2 = 242.7 $ kJ $
Electron Affinity for chlorine = 2 $ \times $ (−349 $ kJ $ )
Standard Enthalpy of Formation of CaCl2 (s) = −795 $ kJ $
We can substitute these values in the equation to find out the lattice energy
$ \Rightarrow - 795{\text{ }}kJ{\text{ }} = {\text{ Lattice Energy }} + {\text{ }}2 \times \left( { - 349{\text{ }}kJ} \right){\text{ }} + {\text{ }}242.4{\text{ }}kJ{\text{ }} + {\text{ }}1145{\text{ }}kJ{\text{ }} + {\text{ }}589.5{\text{ }}kJ{\text{ }} + {\text{ }}121{\text{ }}kJ $
$ \Rightarrow {\text{Lattice Energy = }} - 795{\text{ }}kJ - 2 \times \left( { - 349{\text{ }}kJ} \right) - 242.4{\text{ }}kJ - 1145{\text{ }}kJ - 589.5{\text{ }}kJ - 121{\text{ }}kJ $
$ \Rightarrow {\text{Lattice Energy}} = - 2195.2{\text{ }}kJ/mol $
This is how we find the lattice energy of calcium chloride by using Born-Haber cycle.
Note :
We can also use another method to find out the lattice energy of a compound
This method is by using the Born-Lande Equation, given by
$ Lattice{\text{ }}Energy = \dfrac{{{N_A} \times M \times {z^ + } \times {z^ - } \times {e^2}}}{{4\pi {\varepsilon _o}r}}\left( {1 - \dfrac{1}{n}} \right) $
Where $ {N_A} $ is the Avogadro number
$ M $ is the Madelung Constant
$ {z^ + },{z^ - } $ are the charges of cation and anion respectively
$ e $ is the electronic charge
$ {\varepsilon _o} $ is permittivity of free space
$ r $ is the radial distance
$ n $ is the born exponent.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

