
How do you know which method to use to solve triangles?
Answer
467.1k+ views
Hint: To solve a triangle means, finding the length of its sides and measure of its angle. We can solve the triangle by using either Law of Sines which states that \[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]. Or Law of Cosine which states that \[{{a}^{2}}={{b}^{2}}+{{c}^{2}}-2(bc)\cos A\], here \[A,B\And C\]are the angles of the triangle and \[a,b\And c\] are the length of sides opposite to them respectively.
Complete step by step answer:
To solve a triangle, we can use the Sine rule or Cosine rule. It depends on the given components of the triangle that is the number of sides or number of angles we know, which rule should be used.
We will now see the condition for which the Sine rule should be used to solve a triangle, see the following figure,
As we can see from the above \[\Delta ABC\], \[\angle C={{33}^{\circ }},\angle B={{110}^{\circ }}\And b=20\]. We know the measure of 2 angles and the length of 1 side of the triangle. We know that the sum of all angles of a triangle equals to \[{{180}^{\circ }}\]. Using this we can find the measure of the third angle as,
\[\begin{align}
& \Rightarrow \angle A={{180}^{\circ }}-\angle C-\angle B \\
& \Rightarrow \angle A={{180}^{\circ }}-{{33}^{\circ }}-{{110}^{\circ }} \\
& \Rightarrow \angle A={{37}^{\circ }} \\
\end{align}\]
Now, from the figure we have the measure of \[\angle B\] and length of side \[b\]. We can find the value of \[\dfrac{\sin B}{b}\] and use it in the Sine rule \[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]. The remaining components can be found using this relation.
We will see the condition for which the Cosine rule should be used to solve a triangle, see the figure given below,
From the above figure, we can say that \[\angle O={{43}^{\circ }},m=30cm\And n=20cm\]. We know the measure of an angle and the length of sides opposite to the other two angles. Thus, we can easily use the Cosine rule for this triangle to find the other components.
Note:
There can be other conditions also where a particular rule should be used other than these two. If one of the angles is a right angle then the Cosine rule becomes \[{{a}^{2}}={{b}^{2}}+{{c}^{2}}\] which is called the Pythagoras theorem.
Complete step by step answer:
To solve a triangle, we can use the Sine rule or Cosine rule. It depends on the given components of the triangle that is the number of sides or number of angles we know, which rule should be used.
We will now see the condition for which the Sine rule should be used to solve a triangle, see the following figure,

As we can see from the above \[\Delta ABC\], \[\angle C={{33}^{\circ }},\angle B={{110}^{\circ }}\And b=20\]. We know the measure of 2 angles and the length of 1 side of the triangle. We know that the sum of all angles of a triangle equals to \[{{180}^{\circ }}\]. Using this we can find the measure of the third angle as,
\[\begin{align}
& \Rightarrow \angle A={{180}^{\circ }}-\angle C-\angle B \\
& \Rightarrow \angle A={{180}^{\circ }}-{{33}^{\circ }}-{{110}^{\circ }} \\
& \Rightarrow \angle A={{37}^{\circ }} \\
\end{align}\]
Now, from the figure we have the measure of \[\angle B\] and length of side \[b\]. We can find the value of \[\dfrac{\sin B}{b}\] and use it in the Sine rule \[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]. The remaining components can be found using this relation.
We will see the condition for which the Cosine rule should be used to solve a triangle, see the figure given below,

From the above figure, we can say that \[\angle O={{43}^{\circ }},m=30cm\And n=20cm\]. We know the measure of an angle and the length of sides opposite to the other two angles. Thus, we can easily use the Cosine rule for this triangle to find the other components.
Note:
There can be other conditions also where a particular rule should be used other than these two. If one of the angles is a right angle then the Cosine rule becomes \[{{a}^{2}}={{b}^{2}}+{{c}^{2}}\] which is called the Pythagoras theorem.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
