
Jerk is defined as the rate of change of acceleration of a particle. The velocity of a particle is , where and are constant, Find jerk as a function of time.
a.
b.
c.
d.
Answer
488.1k+ views
1 likes
Hint: The rate of change of acceleration is called jerk. This rate of change of acceleration can be calculated by differentiating the acceleration with respect to time. Since acceleration is the rate of change of velocity, it can be calculated by differentiating the velocity with respect to time. Therefore, to get the function for jerk the expression for velocity must be double differentiated.
Complete step by step answer:
It is given in the question that, the velocity of the particle is-
Here, the velocity is a function of time . It is given that the terms and are constant. The term generally refers to the initial velocity of the object, whereas refers to the frequency or the angular speed of the particle. At an instant, multiplied with the instantaneous time gives the amount of angle covered by the object.
Therefore the acceleration of this particle can be determined by differentiating this function with respect to time,
The equation for derivative of is,
Using this value in the above equation we get,
Now, to calculate the jerk of the object, the expression of acceleration needs to be differentiated with respect to time.
Therefore,
or
The term is constant. Therefore,
The equation for derivative of is,
Using this value in the above equation we get,
The function defining the jerk of the particle is given by,
Hence, the correct answer is option (C).
Note: To calculate the jerk produced in a particle, the velocity must be double differentiated. Since velocity refers to the displacement of an object per unit time, the displacement of the object can also be used to calculate jerk. For this, the displacement of the particle must be differentiated three times. Thus, Jerk is the third derivative of displacement with respect to time.
Complete step by step answer:
It is given in the question that, the velocity of the particle is-
Here, the velocity
Therefore the acceleration of this particle can be determined by differentiating this function with respect to time,
The equation for derivative of
Using this value in the above equation we get,
Now, to calculate the jerk of the object, the expression of acceleration needs to be differentiated with respect to time.
Therefore,
The term
The equation for derivative of
Using this value in the above equation we get,
The function defining the jerk of the particle is given by,
Hence, the correct answer is option (C).
Note: To calculate the jerk produced in a particle, the velocity must be double differentiated. Since velocity refers to the displacement of an object per unit time, the displacement of the object can also be used to calculate jerk. For this, the displacement of the particle must be differentiated three times. Thus, Jerk is the third derivative of displacement with respect to time.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

The flightless birds Rhea Kiwi and Emu respectively class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
