
How many isomeric pentynes $\left( {{C_5}{H_8}} \right)$ are possible:
A. $3$
B. $4$
C. $5$
D. $6$
Given: The formula of the organic compound, pentynes is: $\left( {{C_5}{H_8}} \right)$
Answer
557.4k+ views
Hint:
We can write the structures of different isomers by using different carbon skeletons keeping the same formula.
Complete step by step solution:
We know that isomers are those compounds that have the same molecular formula but different properties. In organic compounds, we have basically two types of isomerism: structural isomers and stereo-isomers. Here, we will discuss the structural isomerism that arises with difference in the structure. We can further classify structural isomers as follows:
- Chain isomers: these have different carbon skeletons
- Position isomers: these have functional group/substituent positioned differently
- Functional group isomers: these have different functional groups
- Metamers: these have different alkyl chains at the sides of a functional group
We are given the organic compound, pentyne whose chemical formula is \[{C_5}{H_8}\]. let’s try to draw structural isomers with formula \[{C_5}{H_8}\] as follows:
As we can see that in pentyne, all the $5$ carbons are attached in a straight chain and the triple bond is between the first and second carbon. This can also be called n-pentyne or $pent - 1 - yne$. In the second isomer, $pent - 2 - yne$, all the $5$ carbons are attached in a straight chain but the triple bond is between second and third carbon. In the last isomer, \[{\rm{3 - methylbut - 1 - yne}}\] , only $4$ carbons are attached in a straight chain, triple bond is between first and second carbon and there is one methyl group present as a substituent on the third carbon. So, all the three isomers have different structures but the molecular formula is the same for all of them.
Hence, the correct option is A.
Note:
We can see that positioning the triple bond between third and fourth or fourth and fifth carbons would have the same structure as that of $pent - 2 - yne$ and $pent - 1 - yne$ respectively.
We can write the structures of different isomers by using different carbon skeletons keeping the same formula.
Complete step by step solution:
We know that isomers are those compounds that have the same molecular formula but different properties. In organic compounds, we have basically two types of isomerism: structural isomers and stereo-isomers. Here, we will discuss the structural isomerism that arises with difference in the structure. We can further classify structural isomers as follows:
- Chain isomers: these have different carbon skeletons
- Position isomers: these have functional group/substituent positioned differently
- Functional group isomers: these have different functional groups
- Metamers: these have different alkyl chains at the sides of a functional group
We are given the organic compound, pentyne whose chemical formula is \[{C_5}{H_8}\]. let’s try to draw structural isomers with formula \[{C_5}{H_8}\] as follows:
As we can see that in pentyne, all the $5$ carbons are attached in a straight chain and the triple bond is between the first and second carbon. This can also be called n-pentyne or $pent - 1 - yne$. In the second isomer, $pent - 2 - yne$, all the $5$ carbons are attached in a straight chain but the triple bond is between second and third carbon. In the last isomer, \[{\rm{3 - methylbut - 1 - yne}}\] , only $4$ carbons are attached in a straight chain, triple bond is between first and second carbon and there is one methyl group present as a substituent on the third carbon. So, all the three isomers have different structures but the molecular formula is the same for all of them.
Hence, the correct option is A.
Note:
We can see that positioning the triple bond between third and fourth or fourth and fifth carbons would have the same structure as that of $pent - 2 - yne$ and $pent - 1 - yne$ respectively.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

