
Who introduced quadratic equations?
Answer
492.6k+ views
Hint: First, we will see the concept of the quadratic equation, and also, we will discuss who introduced the second-degree quadratic equation.
Since quadratic means second degree equation, which has at most degree power two terms in the given function or the polynomial too.
Complete step-by-step solution:
Quadratic equations are called second-degree equations. It means that it consists of at least one term which is squared. Because of this reason, it is known as a quad meaning square.
The general form of the quadratic equation is $a{x^2} + bx + c = 0$ where a, b, and c are numerical coefficients or constants and the value of x is the unknown.
One fundamental rule is that the value $a$ will never be zero. Because if $a = 0$ then we get $bx + c = 0$ but which is a degree one equation and known as the linear equations, thus the value of a will never zero.
Hence this quadratic method was first introduced by Rene Descartes in the publication named La Geometries and in the year of $1637$ .
Note: The standard form of the quadratic equation is by solving any of the quadratic values, suppose take $a{x^2} + bx + c = 0$ then the quadratic formula is $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ it was also known as the Sridharacharya formula to find the variable x and also called as the zeroes of the polynomial formula.
These equations constitute a significant part that is necessary to solve several kinds of the complicated mathematical problem.
In the real-life, they are used extensively, calculating the areas, speed, and other dimensions and also the zeroes of the polynomial.
To solve the quadratic equation we use the standard method, factoring method.
Since quadratic means second degree equation, which has at most degree power two terms in the given function or the polynomial too.
Complete step-by-step solution:
Quadratic equations are called second-degree equations. It means that it consists of at least one term which is squared. Because of this reason, it is known as a quad meaning square.
The general form of the quadratic equation is $a{x^2} + bx + c = 0$ where a, b, and c are numerical coefficients or constants and the value of x is the unknown.
One fundamental rule is that the value $a$ will never be zero. Because if $a = 0$ then we get $bx + c = 0$ but which is a degree one equation and known as the linear equations, thus the value of a will never zero.
Hence this quadratic method was first introduced by Rene Descartes in the publication named La Geometries and in the year of $1637$ .
Note: The standard form of the quadratic equation is by solving any of the quadratic values, suppose take $a{x^2} + bx + c = 0$ then the quadratic formula is $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ it was also known as the Sridharacharya formula to find the variable x and also called as the zeroes of the polynomial formula.
These equations constitute a significant part that is necessary to solve several kinds of the complicated mathematical problem.
In the real-life, they are used extensively, calculating the areas, speed, and other dimensions and also the zeroes of the polynomial.
To solve the quadratic equation we use the standard method, factoring method.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

