
Integrate the following function:
\[\int{\sin 4x.\cos 3xdx}\]
Answer
607.5k+ views
Hint: Firstly Multiply and divide with 2 in the numerator and denominator respectively then we will get numerator in terms of \[2\sin A\cos B\] then split the numerator using trigonometric formula given by \[2\sin A\cos B=\sin (A+B)+\sin (A-B)\] then obtain the integrals of each term using their respective formulas.
Complete step-by-step answer:
To find the \[\int{\sin 4x.\cos 3xdx}\]
Multiply and divide with 2 in the numerator and denominator respectively then we will get,
\[=\dfrac{1}{2}\int{2\sin 4x.\cos 3xdx}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that \[2\sin A\cos B=\sin (A+B)+\sin (A-B)\]
\[=\dfrac{1}{2}\int{\left( \sin 7x+\sin x \right)dx}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=\dfrac{1}{2}\left[ \dfrac{-\cos 7x}{7}-\cos x \right]+c\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[=-\dfrac{\cos 7x}{14}-\dfrac{\cos x}{2}+c\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The integral value of \[\sin x\] is given by \[-\cos x\] and the integral value of \[\sin ax\] is given by \[\dfrac{-\cos ax}{a}\]. For this type of problems we should know the basic trigonometric formulas, identities etc and integrals of the basic trigonometric functions. The constant of integration “c” is used for indefinite integrals.
Complete step-by-step answer:
To find the \[\int{\sin 4x.\cos 3xdx}\]
Multiply and divide with 2 in the numerator and denominator respectively then we will get,
\[=\dfrac{1}{2}\int{2\sin 4x.\cos 3xdx}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that \[2\sin A\cos B=\sin (A+B)+\sin (A-B)\]
\[=\dfrac{1}{2}\int{\left( \sin 7x+\sin x \right)dx}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=\dfrac{1}{2}\left[ \dfrac{-\cos 7x}{7}-\cos x \right]+c\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[=-\dfrac{\cos 7x}{14}-\dfrac{\cos x}{2}+c\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The integral value of \[\sin x\] is given by \[-\cos x\] and the integral value of \[\sin ax\] is given by \[\dfrac{-\cos ax}{a}\]. For this type of problems we should know the basic trigonometric formulas, identities etc and integrals of the basic trigonometric functions. The constant of integration “c” is used for indefinite integrals.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

