
Integrate the following function
\[\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}\]
Answer
519.6k+ views
Hint: In this question, first of all, convert the denominator that is (x – a) (x – b) in the form of \[{{x}^{2}}-{{k}^{2}}\] by using the formulas \[{{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy\] and \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]. Then use \[\int{\dfrac{1}{\sqrt{{{x}^{2}}-{{k}^{2}}}}}=\ln \left| x+\sqrt{{{x}^{2}}-{{c}^{2}}} \right|+k\] and simplify it to get the answer.
Complete step-by-step answer:
Here, we have to integrate the function \[\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}\].
Let us consider the integral given in the question.
\[I=\int{\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}dx}\]
We know that \[\left( x-a \right)\left( x-b \right)={{x}^{2}}-\left( a+b \right)x+ab\]. So, we get,
\[I=\int{\dfrac{1}{\sqrt{{{x}^{2}}-\left( a+b \right)x+ab}}}dx\]
Now, let us assume \[{{x}^{2}}-\left( a+b \right)x+ab=D\left( x \right)\]. So, we get,
\[I=\int{\dfrac{1}{\sqrt{D\left( x \right)}}dx....\left( i \right)}\]
Now, let us consider D(x).
\[D\left( x \right)={{x}^{2}}-\left( a+b \right)x+ab\]
Now, we will add and subtract \[{{\left( \dfrac{a+b}{2} \right)}^{2}}\] in RHS of the above equation, we get,
\[D\left( x \right)={{x}^{2}}-\left( a+b \right)x+ab+{{\left( \dfrac{a+b}{2} \right)}^{2}}-{{\left(
\dfrac{a+b}{2} \right)}^{2}}\]
By rearranging the terms of the above equation, we get,
\[D\left( x \right)={{x}^{2}}-2\left( \dfrac{a+b}{2} \right)x+{{\left( \dfrac{a+b}{2}
\right)}^{2}}+ab-{{\left( \dfrac{a+b}{2} \right)}^{2}}\]
We know that \[{{x}^{2}}+{{y}^{2}}+2xy={{\left( x+y \right)}^{2}}\] and \[{{x}^{2}}+{{y}^{2}}-2xy={{\left( x-y \right)}^{2}}\]. By using these formulas in the above equation, we get,
\[D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}+ab-\left[
\dfrac{{{a}^{2}}+{{b}^{2}}+2ab}{4} \right]\]
By simplifying the above equation, we get,
\[D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}-\left[
\dfrac{{{a}^{2}}+{{b}^{2}}+2ab-4ab}{4} \right]\]
\[D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}-\left(
\dfrac{{{a}^{2}}+{{b}^{2}}-2ab}{4} \right)\]
\[\Rightarrow D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}-{{\left(
\dfrac{a-b}{2} \right)}^{2}}\]
By substituting the values of D(x) in equation (i), we get,
\[I=\int{\dfrac{1}{{{\left[ x-\dfrac{\left( a+b \right)}{2} \right]}^{2}}-{{\left( \dfrac{a-b}{2}
\right)}^{2}}}dx}\]
Now, let us take \[\left[ x-\dfrac{\left( a+b \right)}{2} \right]=t\]
So, by differentiating both the sides, we get, dx = dt. So, we get,
\[I=\int{\dfrac{1}{{{t}^{2}}-{{\left( \dfrac{a-b}{2} \right)}^{2}}}}dt\]
We know that, \[\int{\dfrac{1}{{{x}^{2}}-{{c}^{2}}}dx}=\ln \left| x+\sqrt{{{x}^{2}}+{{c}^{2}}}
\right|+k\]
where k and c are constants. So by using this in the above equation, we get,
\[I=\ln \left| t+\sqrt{\left[ {{t}^{2}}-{{\left( \dfrac{a-b}{2} \right)}^{2}} \right]} \right|+k\]
By substituting the value of t in the above equation (i), we get,
\[I=\ln \left| \left( x-\left( \dfrac{a+b}{2} \right) \right)+\sqrt{\left[ x-{{\left( \dfrac{a+b}{2}
\right)}^{2}}-{{\left( \dfrac{a-b}{2} \right)}^{2}} \right]} \right|+k\]
Let us take \[E={{\left( x-\left( \dfrac{a+b}{2} \right) \right)}^{2}}-{{\left( \dfrac{a-b}{2}
\right)}^{2}}\]
So, we get, \[I=\ln \left| \left( x-\left( \dfrac{a+b}{2} \right) \right)+\sqrt{E} \right|+k....\left( ii
\right)\]
We know that \[{{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy\] and \[{{\left( x-y
\right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
So, by simplifying the expression for E, we get,
\[E={{x}^{2}}+{{\left( \dfrac{a+b}{2} \right)}^{2}}-2.x.\left( \dfrac{a+b}{2} \right)-{{\left(
\dfrac{a-b}{2} \right)}^{2}}\]
\[E={{x}^{2}}-x\left( a+b \right)+{{\left( \dfrac{a+b}{2} \right)}^{2}}-{{\left( \dfrac{a-b}{2}
\right)}^{2}}\]
\[E={{x}^{2}}-x\left( a+b \right)+\left( \dfrac{{{a}^{2}}+{{b}^{2}}+2ab}{4} \right)-\left(
\dfrac{{{a}^{2}}+{{b}^{2}}-2ab}{4} \right)\]
By canceling out the like terms, we get,
\[\Rightarrow E={{x}^{2}}-x\left( a+b \right)+\dfrac{4ab}{4}\]
\[E={{x}^{2}}-x\left( a+b \right)+ab\]
\[\Rightarrow E=\left( x-a \right)\left( x-b \right)\]
By substituting the value of E in equation (ii), we get,
\[I=\ln \left| \left( x-\dfrac{\left( a+b \right)}{2} \right)+\sqrt{\left( x-a \right)\left( x-b \right)}
\right|+k\]
So, we get,
\[\int{\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}=\ln \left| \left( x-\left( \dfrac{a+b}{2}
\right) \right)+\sqrt{\left( x-a \right)\left( x-b \right)} \right|+k}\]
Note: In this question, students must take care of the sign of terms while taking common terms and rearranging the terms. As the question involves a lot of algebra, students are advised to check each equation twice to avoid any mistakes because that can lead to the whole solution being incorrect. Also, in these types of questions, students should always try to convert the term into perfect squares by adding and subtracting a constant term.
Complete step-by-step answer:
Here, we have to integrate the function \[\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}\].
Let us consider the integral given in the question.
\[I=\int{\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}dx}\]
We know that \[\left( x-a \right)\left( x-b \right)={{x}^{2}}-\left( a+b \right)x+ab\]. So, we get,
\[I=\int{\dfrac{1}{\sqrt{{{x}^{2}}-\left( a+b \right)x+ab}}}dx\]
Now, let us assume \[{{x}^{2}}-\left( a+b \right)x+ab=D\left( x \right)\]. So, we get,
\[I=\int{\dfrac{1}{\sqrt{D\left( x \right)}}dx....\left( i \right)}\]
Now, let us consider D(x).
\[D\left( x \right)={{x}^{2}}-\left( a+b \right)x+ab\]
Now, we will add and subtract \[{{\left( \dfrac{a+b}{2} \right)}^{2}}\] in RHS of the above equation, we get,
\[D\left( x \right)={{x}^{2}}-\left( a+b \right)x+ab+{{\left( \dfrac{a+b}{2} \right)}^{2}}-{{\left(
\dfrac{a+b}{2} \right)}^{2}}\]
By rearranging the terms of the above equation, we get,
\[D\left( x \right)={{x}^{2}}-2\left( \dfrac{a+b}{2} \right)x+{{\left( \dfrac{a+b}{2}
\right)}^{2}}+ab-{{\left( \dfrac{a+b}{2} \right)}^{2}}\]
We know that \[{{x}^{2}}+{{y}^{2}}+2xy={{\left( x+y \right)}^{2}}\] and \[{{x}^{2}}+{{y}^{2}}-2xy={{\left( x-y \right)}^{2}}\]. By using these formulas in the above equation, we get,
\[D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}+ab-\left[
\dfrac{{{a}^{2}}+{{b}^{2}}+2ab}{4} \right]\]
By simplifying the above equation, we get,
\[D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}-\left[
\dfrac{{{a}^{2}}+{{b}^{2}}+2ab-4ab}{4} \right]\]
\[D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}-\left(
\dfrac{{{a}^{2}}+{{b}^{2}}-2ab}{4} \right)\]
\[\Rightarrow D\left( x \right)={{\left[ x-\left( \dfrac{a+b}{2} \right) \right]}^{2}}-{{\left(
\dfrac{a-b}{2} \right)}^{2}}\]
By substituting the values of D(x) in equation (i), we get,
\[I=\int{\dfrac{1}{{{\left[ x-\dfrac{\left( a+b \right)}{2} \right]}^{2}}-{{\left( \dfrac{a-b}{2}
\right)}^{2}}}dx}\]
Now, let us take \[\left[ x-\dfrac{\left( a+b \right)}{2} \right]=t\]
So, by differentiating both the sides, we get, dx = dt. So, we get,
\[I=\int{\dfrac{1}{{{t}^{2}}-{{\left( \dfrac{a-b}{2} \right)}^{2}}}}dt\]
We know that, \[\int{\dfrac{1}{{{x}^{2}}-{{c}^{2}}}dx}=\ln \left| x+\sqrt{{{x}^{2}}+{{c}^{2}}}
\right|+k\]
where k and c are constants. So by using this in the above equation, we get,
\[I=\ln \left| t+\sqrt{\left[ {{t}^{2}}-{{\left( \dfrac{a-b}{2} \right)}^{2}} \right]} \right|+k\]
By substituting the value of t in the above equation (i), we get,
\[I=\ln \left| \left( x-\left( \dfrac{a+b}{2} \right) \right)+\sqrt{\left[ x-{{\left( \dfrac{a+b}{2}
\right)}^{2}}-{{\left( \dfrac{a-b}{2} \right)}^{2}} \right]} \right|+k\]
Let us take \[E={{\left( x-\left( \dfrac{a+b}{2} \right) \right)}^{2}}-{{\left( \dfrac{a-b}{2}
\right)}^{2}}\]
So, we get, \[I=\ln \left| \left( x-\left( \dfrac{a+b}{2} \right) \right)+\sqrt{E} \right|+k....\left( ii
\right)\]
We know that \[{{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy\] and \[{{\left( x-y
\right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
So, by simplifying the expression for E, we get,
\[E={{x}^{2}}+{{\left( \dfrac{a+b}{2} \right)}^{2}}-2.x.\left( \dfrac{a+b}{2} \right)-{{\left(
\dfrac{a-b}{2} \right)}^{2}}\]
\[E={{x}^{2}}-x\left( a+b \right)+{{\left( \dfrac{a+b}{2} \right)}^{2}}-{{\left( \dfrac{a-b}{2}
\right)}^{2}}\]
\[E={{x}^{2}}-x\left( a+b \right)+\left( \dfrac{{{a}^{2}}+{{b}^{2}}+2ab}{4} \right)-\left(
\dfrac{{{a}^{2}}+{{b}^{2}}-2ab}{4} \right)\]
By canceling out the like terms, we get,
\[\Rightarrow E={{x}^{2}}-x\left( a+b \right)+\dfrac{4ab}{4}\]
\[E={{x}^{2}}-x\left( a+b \right)+ab\]
\[\Rightarrow E=\left( x-a \right)\left( x-b \right)\]
By substituting the value of E in equation (ii), we get,
\[I=\ln \left| \left( x-\dfrac{\left( a+b \right)}{2} \right)+\sqrt{\left( x-a \right)\left( x-b \right)}
\right|+k\]
So, we get,
\[\int{\dfrac{1}{\sqrt{\left( x-a \right)\left( x-b \right)}}=\ln \left| \left( x-\left( \dfrac{a+b}{2}
\right) \right)+\sqrt{\left( x-a \right)\left( x-b \right)} \right|+k}\]
Note: In this question, students must take care of the sign of terms while taking common terms and rearranging the terms. As the question involves a lot of algebra, students are advised to check each equation twice to avoid any mistakes because that can lead to the whole solution being incorrect. Also, in these types of questions, students should always try to convert the term into perfect squares by adding and subtracting a constant term.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
