
How do you integrate $ \left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx $ ?
Answer
561.9k+ views
Hint: To solve the above question we can apply a substitution method. If we are given a equation like $ \int{f\left( g\left( x \right) \right)g'\left( x \right)dx} $ to integrate where $ g'\left( x \right) $ is differentiation of $ g\left( x \right) $ with respect to x , we can substitute $ g\left( x \right) $ with t so the value of $ g'\left( x \right)dx $ will equal to $ dt $ so equation will change to $ \int{f\left( t \right)dt} $ . We can apply this method to solve the above question.
Complete step by step answer:
In the given question we have integrate $ \left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx $
We can see there are 2 terms present in the equation $ \ln x $ and $ \dfrac{1}{x} $ and we know that derivative of $ \ln x $ is $ \dfrac{1}{x} $ so it is a good idea to take $ \ln x $ as t
If $ t=\ln x $ , then we can write
$ dt=\dfrac{1}{x}dx $
Now replacing $ \ln x $ with t and $ \dfrac{1}{x}dx $ with $ dt $ we can write
$ \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=\int{tdt}} $
We know that the value of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ where n is not equal to -1 and c is a constant.
When we put x=1 we get $ \int{xdx=\dfrac{{{x}^{2}}}{2}}+c $
We can write $ \int{tdt=\dfrac{{{t}^{2}}}{2}+c} $
Now we know that $ t=\ln x $ we can replace t with $ \ln x $
$ \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=\int{\dfrac{{{\left( \ln x \right)}^{2}}}{2}}}+c $ where c is any constant.
This is one way we can solve the question.
Note:
Another method to solve the integration is by integration by parts . In integration by parts we write $ \int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)\left( \int{g\left( x \right)dx} \right)dx+c}} $ where $ f'\left( x \right) $ is derivative of $ f\left( x \right) $ with respect to x. So we can write
$ \Rightarrow \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=}\ln x\int{\dfrac{1}{x}dx-\int{\dfrac{d\left( \ln x \right)}{dx}.\left( \int{\dfrac{1}{x}dx} \right)}dx}+c $
We know that the integration of $ \dfrac{1}{x} $ is $ \ln x $ and derivative of $ \ln x $ is $ \dfrac{1}{x} $
$ \Rightarrow \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=}\ln x.\ln x-\int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx}+c $
Now if we take the variable I as $ \int{\ln \left( x \right).\left( \dfrac{1}{x} \right)dx} $ and replace in our equation we get
$ I={{\left( \ln x \right)}^{2}}-I+c $
By further solving
$ \Rightarrow 2I={{\left( \ln x \right)}^{2}}+c $
$ \Rightarrow I=\dfrac{{{\left( \ln x \right)}^{2}}}{2}+{{c}_{1}} $
So $ \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=\int{\dfrac{{{\left( \ln x \right)}^{2}}}{2}}}+{{c}_{1}} $ where $ {{c}_{1}} $ is any constant and $ {{c}_{1}}=\dfrac{c}{2} $
Complete step by step answer:
In the given question we have integrate $ \left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx $
We can see there are 2 terms present in the equation $ \ln x $ and $ \dfrac{1}{x} $ and we know that derivative of $ \ln x $ is $ \dfrac{1}{x} $ so it is a good idea to take $ \ln x $ as t
If $ t=\ln x $ , then we can write
$ dt=\dfrac{1}{x}dx $
Now replacing $ \ln x $ with t and $ \dfrac{1}{x}dx $ with $ dt $ we can write
$ \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=\int{tdt}} $
We know that the value of $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c $ where n is not equal to -1 and c is a constant.
When we put x=1 we get $ \int{xdx=\dfrac{{{x}^{2}}}{2}}+c $
We can write $ \int{tdt=\dfrac{{{t}^{2}}}{2}+c} $
Now we know that $ t=\ln x $ we can replace t with $ \ln x $
$ \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=\int{\dfrac{{{\left( \ln x \right)}^{2}}}{2}}}+c $ where c is any constant.
This is one way we can solve the question.
Note:
Another method to solve the integration is by integration by parts . In integration by parts we write $ \int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)\left( \int{g\left( x \right)dx} \right)dx+c}} $ where $ f'\left( x \right) $ is derivative of $ f\left( x \right) $ with respect to x. So we can write
$ \Rightarrow \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=}\ln x\int{\dfrac{1}{x}dx-\int{\dfrac{d\left( \ln x \right)}{dx}.\left( \int{\dfrac{1}{x}dx} \right)}dx}+c $
We know that the integration of $ \dfrac{1}{x} $ is $ \ln x $ and derivative of $ \ln x $ is $ \dfrac{1}{x} $
$ \Rightarrow \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=}\ln x.\ln x-\int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx}+c $
Now if we take the variable I as $ \int{\ln \left( x \right).\left( \dfrac{1}{x} \right)dx} $ and replace in our equation we get
$ I={{\left( \ln x \right)}^{2}}-I+c $
By further solving
$ \Rightarrow 2I={{\left( \ln x \right)}^{2}}+c $
$ \Rightarrow I=\dfrac{{{\left( \ln x \right)}^{2}}}{2}+{{c}_{1}} $
So $ \int{\left( \ln \left( x \right).\left( \dfrac{1}{x} \right) \right)dx=\int{\dfrac{{{\left( \ln x \right)}^{2}}}{2}}}+{{c}_{1}} $ where $ {{c}_{1}} $ is any constant and $ {{c}_{1}}=\dfrac{c}{2} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

