
How do you integrate \[\cos \left( \ln x \right)dx\]?
Answer
525.9k+ views
Hint: In the given question, we have been asked to integrate the given expression. This question will be solved by parts method of integration such that,\[\int{f\left( x \right)g'\left( x \right)dx=f\left( x \right)g\left( x \right)-\int{f'\left( x \right)g\left( x \right)dx}}\].
For solving the question, first we need to substitute \[\ln x=\theta \ thus\ \Rightarrow x={{e}^{\theta }}\]and then differentiate it with respect to ‘x’. Later we substitute these values in the given integral and integrate the resultant expression by using the by-parts method. We will need to simplify the resultant integral to get the required integration.
Complete step-by-step solution:
We have given that,
\[\Rightarrow \int{\cos \left( \ln x \right)dx}\]
Now,
Let
\[\ln x=\theta \ thus\ \Rightarrow x={{e}^{\theta }}\]
Differentiating both the sides, we get
\[\ \Rightarrow dx={{e}^{\theta }}d\theta \]
Therefore,
Substituting the values from the above in the given integral, we get
\[\Rightarrow \int{\cos \left( \ln x \right)dx}=\int{\cos \theta \left( {{e}^{\theta }} \right)d\theta }\]
Rewrite the above as integral as,
\[\Rightarrow \int{\cos \theta \left( {{e}^{\theta }} \right)d\theta }=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\]
Let A be the integral, thus we obtained
\[\Rightarrow A=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\]
Formula of integration by parts as follows;
\[\int{f\left( x \right)g'\left( x \right)dx=f\left( x \right)g\left( x \right)-\int{f'\left( x \right)g\left( x \right)dx}}\]
Thus, integrating the resultant expression, we obtain
Here,
\[f\left( x \right)={{e}^{\theta }}\ thus\ \Rightarrow f'\left( x \right)={{e}^{\theta }}\]
And
\[g'\left( x \right)=\cos \theta \ thus\ \Rightarrow g\left( x \right)=\sin \theta \]
Therefore,
\[\Rightarrow A=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)-\int{\left( {{e}^{\theta }} \right)\left( \sin \theta \right)d\theta }\]
Integrate again by using the by-parts method, we get
\[\Rightarrow A=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right)-\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\]
Substituting \[A=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\] in the above integration, we get
\[\Rightarrow A=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right)-A\]
Simplifying the above, we get
\[\Rightarrow 2A=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right)\]
\[\Rightarrow A=\dfrac{1}{2}\left( \left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right) \right)=\dfrac{1}{2}{{e}^{\theta }}\left( \sin \theta +\cos \theta \right)+C\]
Thus,
\[\Rightarrow A=\dfrac{1}{2}{{e}^{\theta }}\left( \sin \theta +\cos \theta \right)+C\]
Therefore,
\[\Rightarrow \int{\cos \left( \ln x \right)dx}=\dfrac{1}{2}{{e}^{\theta }}\left( \sin \theta +\cos \theta \right)+C\]
Undo the substitution\[x=\theta \],
\[\Rightarrow \int{\cos \left( \ln x \right)dx}=\dfrac{1}{2}{{e}^{x}}\left( \sin x+\cos x \right)+C\]
Hence, this is the required integration.
Hence the correct answer is \[ \int{\cos \left( \ln x \right)dx}=\dfrac{1}{2}{{e}^{x}}\left( \sin x+\cos x \right)+C\]
Note: While solving these types of questions, students always remember the formula for integration using the by-parts method. Students mostly make mistakes while choosing the f(x) and g(x), so you should be very careful while choosing the f(x) and g(x) as it will make the given integration easy to solve easily. We should be well aware about the by-parts method of integration and we should also be well known about the application of integration. Students should be very careful while doing the calculation part of the given integral.
For solving the question, first we need to substitute \[\ln x=\theta \ thus\ \Rightarrow x={{e}^{\theta }}\]and then differentiate it with respect to ‘x’. Later we substitute these values in the given integral and integrate the resultant expression by using the by-parts method. We will need to simplify the resultant integral to get the required integration.
Complete step-by-step solution:
We have given that,
\[\Rightarrow \int{\cos \left( \ln x \right)dx}\]
Now,
Let
\[\ln x=\theta \ thus\ \Rightarrow x={{e}^{\theta }}\]
Differentiating both the sides, we get
\[\ \Rightarrow dx={{e}^{\theta }}d\theta \]
Therefore,
Substituting the values from the above in the given integral, we get
\[\Rightarrow \int{\cos \left( \ln x \right)dx}=\int{\cos \theta \left( {{e}^{\theta }} \right)d\theta }\]
Rewrite the above as integral as,
\[\Rightarrow \int{\cos \theta \left( {{e}^{\theta }} \right)d\theta }=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\]
Let A be the integral, thus we obtained
\[\Rightarrow A=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\]
Formula of integration by parts as follows;
\[\int{f\left( x \right)g'\left( x \right)dx=f\left( x \right)g\left( x \right)-\int{f'\left( x \right)g\left( x \right)dx}}\]
Thus, integrating the resultant expression, we obtain
Here,
\[f\left( x \right)={{e}^{\theta }}\ thus\ \Rightarrow f'\left( x \right)={{e}^{\theta }}\]
And
\[g'\left( x \right)=\cos \theta \ thus\ \Rightarrow g\left( x \right)=\sin \theta \]
Therefore,
\[\Rightarrow A=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)-\int{\left( {{e}^{\theta }} \right)\left( \sin \theta \right)d\theta }\]
Integrate again by using the by-parts method, we get
\[\Rightarrow A=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right)-\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\]
Substituting \[A=\int{\left( {{e}^{\theta }} \right)\left( \cos \theta \right)d\theta }\] in the above integration, we get
\[\Rightarrow A=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right)-A\]
Simplifying the above, we get
\[\Rightarrow 2A=\left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right)\]
\[\Rightarrow A=\dfrac{1}{2}\left( \left( {{e}^{\theta }} \right)\left( \sin \theta \right)+\left( {{e}^{\theta }} \right)\left( \cos \theta \right) \right)=\dfrac{1}{2}{{e}^{\theta }}\left( \sin \theta +\cos \theta \right)+C\]
Thus,
\[\Rightarrow A=\dfrac{1}{2}{{e}^{\theta }}\left( \sin \theta +\cos \theta \right)+C\]
Therefore,
\[\Rightarrow \int{\cos \left( \ln x \right)dx}=\dfrac{1}{2}{{e}^{\theta }}\left( \sin \theta +\cos \theta \right)+C\]
Undo the substitution\[x=\theta \],
\[\Rightarrow \int{\cos \left( \ln x \right)dx}=\dfrac{1}{2}{{e}^{x}}\left( \sin x+\cos x \right)+C\]
Hence, this is the required integration.
Hence the correct answer is \[ \int{\cos \left( \ln x \right)dx}=\dfrac{1}{2}{{e}^{x}}\left( \sin x+\cos x \right)+C\]
Note: While solving these types of questions, students always remember the formula for integration using the by-parts method. Students mostly make mistakes while choosing the f(x) and g(x), so you should be very careful while choosing the f(x) and g(x) as it will make the given integration easy to solve easily. We should be well aware about the by-parts method of integration and we should also be well known about the application of integration. Students should be very careful while doing the calculation part of the given integral.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

