
How many integers between 50 and 500 which are divisible by 7?
Answer
602.1k+ views
Hint: For solving this problem, we have to find out the first number after 50 and the last number before 500 which is divisible by 7. After finding these two numbers, we can apply the concept of arithmetic progression to calculate the number of terms. Using this methodology, we can easily solve the problem.
Complete step-by-step answer:
In mathematics, the number system is the branch that deals with various types of numbers possible to form and easy to operate with different operators such as addition, multiplication and so on. Integers are those numbers which are not in fraction and can occupy negative values.
First, dividing 50 by 7 leaves remainder 1. So, the first term after 50 which is divisible by 7 would be 56. Now, dividing 500 by 7 leaves a remainder 3. So, the last term would be 497.
Now, we have to find the total terms between 56 and 497 which are divisible by 7. To do so, we form an A.P. having a common difference of 7 with first and last term being 56 and 497 respectively.
So, by using the general term for an A.P.: ${{a}_{n}}=a+(n-1)\cdot d$
Now, putting values of variables as ${{a}_{n}}$ = 497, a = 56 and d = 7, we get
$\begin{align}
& 497=56+(n-1)\cdot 7 \\
& 497-56=(n-1)\cdot 7 \\
& 441=(n-1)\cdot 7 \\
& n-1=\dfrac{441}{7} \\
& n-1=63 \\
& n=64 \\
\end{align}$
Hence, there are 64 numbers between 50 and 500 which are divisible by 7.
Note: The key concept and solving this problem is the knowledge of arithmetic progression. For solving any problem in which a number of terms are required, we can form an A.P. and then apply the formula to evaluate the number of terms.
Complete step-by-step answer:
In mathematics, the number system is the branch that deals with various types of numbers possible to form and easy to operate with different operators such as addition, multiplication and so on. Integers are those numbers which are not in fraction and can occupy negative values.
First, dividing 50 by 7 leaves remainder 1. So, the first term after 50 which is divisible by 7 would be 56. Now, dividing 500 by 7 leaves a remainder 3. So, the last term would be 497.
Now, we have to find the total terms between 56 and 497 which are divisible by 7. To do so, we form an A.P. having a common difference of 7 with first and last term being 56 and 497 respectively.
So, by using the general term for an A.P.: ${{a}_{n}}=a+(n-1)\cdot d$
Now, putting values of variables as ${{a}_{n}}$ = 497, a = 56 and d = 7, we get
$\begin{align}
& 497=56+(n-1)\cdot 7 \\
& 497-56=(n-1)\cdot 7 \\
& 441=(n-1)\cdot 7 \\
& n-1=\dfrac{441}{7} \\
& n-1=63 \\
& n=64 \\
\end{align}$
Hence, there are 64 numbers between 50 and 500 which are divisible by 7.
Note: The key concept and solving this problem is the knowledge of arithmetic progression. For solving any problem in which a number of terms are required, we can form an A.P. and then apply the formula to evaluate the number of terms.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

