In the given reaction, product A is:
$CHC{l_3}\xrightarrow[{excess}]{{^{KOH(aq)}}}A$
A.Formic acid
B.Potassium formate
C.Acetic acid
D.Potassium acetate
Answer
279.3k+ views
Hint: We have to remember that the polyhalogen compounds are carbon compounds with more than one halogen atom (elements of the modern periodic table's group $17$). Trichloromethane, also known as chloroform, is an organic compound with the formula $CHC{l_3}$. It is a trihalomethane and one of the four chloromethanes. Potassium hydroxide, also known as caustic potash, is an inorganic compound with the formula $KOH$. $KOH$ is a prototypical solid base, along with sodium hydroxide.
Complete answer:
We have to know that as chloroform reacts with aqueous $KOH$, the chlorines on the carbon atom are substituted one by one by $ - OH$ groups from $KOH$via a nucleophilic reaction (SN2). In theory, it forms \[CHC{l_2}\left( {OH} \right)\]\[CHCl{\left( {OH} \right)_2}\] and \[CH{\left( {OH} \right)_3}\]in that order, while removing $KCl$at each step. \[CHCl{\left( {OH} \right)_2}\] will spontaneously release one molecule of \[{H_2}O\]and produce \[HC\left( { = O} \right)Cl\] or formyl chloride, which will then be hydrolyzed to produce \[HCOOK\]or Potassium Formate because \[C{l^ - }\] is an outstanding leaving group.
We get \[CH{\left( {OH} \right)_3}\]from aq. $KOH$, which is less stable and loses \[{H_2}O\]to give \[HCOOH\], and then reacts with another mole of aq. $KOH$to give potassium formate.
Therefore, the correct option is option (B).
Sodium formate and sodium chloride can be generated by hydrolyzing chloroform with \[NaOH\]and tetrabutylammonium bromide. This formate can be protonated in the same way as formic acid.
Hence, option (A) is incorrect.
Acetic acid cannot be produced from chloroform but rather produced by the oxidation of the intermediates formed during the production of chloroform.
Hence, Option (C) is incorrect.
Potassium acetate is formed by the reaction of $KOH$with acetic acid and not chloroform.
Hence, option (D) is incorrect.
Note:
It must be noted that one mole of Chloroform will react with four moles of $KOH$ to produce one mole of \[HCOOK\] (potassium formate) along with three moles of \[KCl\]and two moles of \[{H_2}O\]. This reaction is only possible when excess of $KOH$ is present and the reaction is allowed to reach its completion. Also, this reaction is only for aqueous $KOH$; alcoholic $KOH$ gives a different result.
Complete answer:
We have to know that as chloroform reacts with aqueous $KOH$, the chlorines on the carbon atom are substituted one by one by $ - OH$ groups from $KOH$via a nucleophilic reaction (SN2). In theory, it forms \[CHC{l_2}\left( {OH} \right)\]\[CHCl{\left( {OH} \right)_2}\] and \[CH{\left( {OH} \right)_3}\]in that order, while removing $KCl$at each step. \[CHCl{\left( {OH} \right)_2}\] will spontaneously release one molecule of \[{H_2}O\]and produce \[HC\left( { = O} \right)Cl\] or formyl chloride, which will then be hydrolyzed to produce \[HCOOK\]or Potassium Formate because \[C{l^ - }\] is an outstanding leaving group.
We get \[CH{\left( {OH} \right)_3}\]from aq. $KOH$, which is less stable and loses \[{H_2}O\]to give \[HCOOH\], and then reacts with another mole of aq. $KOH$to give potassium formate.
Therefore, the correct option is option (B).
Sodium formate and sodium chloride can be generated by hydrolyzing chloroform with \[NaOH\]and tetrabutylammonium bromide. This formate can be protonated in the same way as formic acid.
Hence, option (A) is incorrect.
Acetic acid cannot be produced from chloroform but rather produced by the oxidation of the intermediates formed during the production of chloroform.
Hence, Option (C) is incorrect.
Potassium acetate is formed by the reaction of $KOH$with acetic acid and not chloroform.
Hence, option (D) is incorrect.
Note:
It must be noted that one mole of Chloroform will react with four moles of $KOH$ to produce one mole of \[HCOOK\] (potassium formate) along with three moles of \[KCl\]and two moles of \[{H_2}O\]. This reaction is only possible when excess of $KOH$ is present and the reaction is allowed to reach its completion. Also, this reaction is only for aqueous $KOH$; alcoholic $KOH$ gives a different result.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
