Answer
Verified
470.1k+ views
Hint: Find the relation between the radius of the circle and the side of the square and then calculate the required areas.
Let the radius of the circle is $r$ and the side of the square handkerchief is $S$. The radius is given in the question. So, we have:
$ \Rightarrow r = 7cm$
As we can see from the figure, each side of the square is completely covered by three circles.
Thus the side of the square will be the sum of the lengths of the diameter of these three circles. But the circles are of equal diameters, then we have:
$
\Rightarrow s = 2r + 2r + 2r, \\
\Rightarrow s = 2(7) + 2(7) + 2(7) \\
\Rightarrow s = 14 + 14 + 14, \\
\Rightarrow s = 42 \\
$
Thus the side of the square is $42 cm$ . And we know the formula for the area of square which is ${s^2}$. So we have:
$
\Rightarrow {A_{square}} = {s^2}, \\
\Rightarrow {A_{square}} = {\left( {42} \right)^2}, \\
\Rightarrow {A_{square}} = 1764c{m^2} \\
$
Area of circle is $\pi {r^2}$. And there are $9$ circles in the square. So, the total area of all the circles is:
$
\Rightarrow {A_{circles}} = 9\pi {r^2}, \\
\Rightarrow {A_{circles}} = 9 \times \dfrac{{22}}{7} \times {\left( 7 \right)^2}, \\
\Rightarrow {A_{circles}} = 1386c{m^2}. \\
$
Therefore, the area of the remaining part of the handkerchief is:
$
\Rightarrow {A_{remaining}} = {A_{square}} - {A_{circles}}, \\
\Rightarrow {A_{remaining}} = 1764 - 1386, \\
\Rightarrow {A_{remaining}} = 378c{m^2}. \\
$
Thus, the area of the remaining portion of the handkerchief is $378c{m^2}$.
Note: In such cases, when one of the standard geometrical figures is inscribed in another standard figure, finding the relation between the sides of both the figures is the key point to solve the question.
Let the radius of the circle is $r$ and the side of the square handkerchief is $S$. The radius is given in the question. So, we have:
$ \Rightarrow r = 7cm$
As we can see from the figure, each side of the square is completely covered by three circles.
Thus the side of the square will be the sum of the lengths of the diameter of these three circles. But the circles are of equal diameters, then we have:
$
\Rightarrow s = 2r + 2r + 2r, \\
\Rightarrow s = 2(7) + 2(7) + 2(7) \\
\Rightarrow s = 14 + 14 + 14, \\
\Rightarrow s = 42 \\
$
Thus the side of the square is $42 cm$ . And we know the formula for the area of square which is ${s^2}$. So we have:
$
\Rightarrow {A_{square}} = {s^2}, \\
\Rightarrow {A_{square}} = {\left( {42} \right)^2}, \\
\Rightarrow {A_{square}} = 1764c{m^2} \\
$
Area of circle is $\pi {r^2}$. And there are $9$ circles in the square. So, the total area of all the circles is:
$
\Rightarrow {A_{circles}} = 9\pi {r^2}, \\
\Rightarrow {A_{circles}} = 9 \times \dfrac{{22}}{7} \times {\left( 7 \right)^2}, \\
\Rightarrow {A_{circles}} = 1386c{m^2}. \\
$
Therefore, the area of the remaining part of the handkerchief is:
$
\Rightarrow {A_{remaining}} = {A_{square}} - {A_{circles}}, \\
\Rightarrow {A_{remaining}} = 1764 - 1386, \\
\Rightarrow {A_{remaining}} = 378c{m^2}. \\
$
Thus, the area of the remaining portion of the handkerchief is $378c{m^2}$.
Note: In such cases, when one of the standard geometrical figures is inscribed in another standard figure, finding the relation between the sides of both the figures is the key point to solve the question.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE