In the given figure, O is the centre of the circle. If $\angle PBC = 25^\circ and \angle APB = 110^\circ $, find the value of $\angle ADB$
Answer
Verified
506.1k+ views
Hint: We can solve this problem by using the concept i.e.
Angles inscribed by same arc on the circumference of circle are always EQUAL
Complete step-by-step answer:
We will write the given first,
$\angle PBC = 25^\circ and \angle APB = 110^\circ $……………………………. (1)
To find the a$\angle ADB$ we should know the key concept given below,
Concept: Angles inscribed by same arc on the circumference of circle are always EQUAL
Therefore we can say Angles inscribed by arc AB are equal. That is,
$\angle ADB = \angle ACB$…………………………………. (2)
Now let’s find$\angle ACB$,
As we all know $\angle APC$ is a straight angle,
$\angle APC = 180^\circ $
But, $\angle APC$can be written as,
$\angle APC = \angle APB + \angle CPB$
$\therefore 180^\circ = 110^\circ + \angle CPB$………………………….. [From (1)]
$\therefore \angle CPB = 180^\circ - 110^\circ $
$\therefore \angle CPB = 70^\circ $……………………………….. (3)
Now consider $\triangle BPC$,
As the property of a triangle says that the sum of three angles of a triangle are $180^\circ $,
$\angle CPB + \angle PBC + \angle BCP = 180^\circ $
$\therefore 70^\circ + 25^\circ + \angle BCP = 180^\circ $
$\therefore \angle BCP = 180^\circ - 95^\circ $
$\therefore \angle BCP = 85^\circ $
We can write $\angle BCP$ as $\angle PCB$
$\therefore \angle PCB = 85^\circ $
Now if we see the figure we will come to know that $\angle PCB = \angle ACB$ as P and A lie on the same line.
$\therefore \angle ACB = 85^\circ $
Our target is to find the ∠ADB therefore rewrite the equation (2)
$\therefore \angle ADB = \angle ACB$
Put the value of$\angle ACB = 85^\circ $,
$\therefore \angle ADB = 85^\circ $
Therefore the value of $\angle ADB$ is $85^\circ $.
Note: Always remember to draw diagrams for this type of problems to avoid confusion. Also, the property of a circle given by “Angles inscribed by the same arc on the circumference of a circle are always EQUAL” is very much important to solve this problem.
Angles inscribed by same arc on the circumference of circle are always EQUAL
Complete step-by-step answer:
We will write the given first,
$\angle PBC = 25^\circ and \angle APB = 110^\circ $……………………………. (1)
To find the a$\angle ADB$ we should know the key concept given below,
Concept: Angles inscribed by same arc on the circumference of circle are always EQUAL
Therefore we can say Angles inscribed by arc AB are equal. That is,
$\angle ADB = \angle ACB$…………………………………. (2)
Now let’s find$\angle ACB$,
As we all know $\angle APC$ is a straight angle,
$\angle APC = 180^\circ $
But, $\angle APC$can be written as,
$\angle APC = \angle APB + \angle CPB$
$\therefore 180^\circ = 110^\circ + \angle CPB$………………………….. [From (1)]
$\therefore \angle CPB = 180^\circ - 110^\circ $
$\therefore \angle CPB = 70^\circ $……………………………….. (3)
Now consider $\triangle BPC$,
As the property of a triangle says that the sum of three angles of a triangle are $180^\circ $,
$\angle CPB + \angle PBC + \angle BCP = 180^\circ $
$\therefore 70^\circ + 25^\circ + \angle BCP = 180^\circ $
$\therefore \angle BCP = 180^\circ - 95^\circ $
$\therefore \angle BCP = 85^\circ $
We can write $\angle BCP$ as $\angle PCB$
$\therefore \angle PCB = 85^\circ $
Now if we see the figure we will come to know that $\angle PCB = \angle ACB$ as P and A lie on the same line.
$\therefore \angle ACB = 85^\circ $
Our target is to find the ∠ADB therefore rewrite the equation (2)
$\therefore \angle ADB = \angle ACB$
Put the value of$\angle ACB = 85^\circ $,
$\therefore \angle ADB = 85^\circ $
Therefore the value of $\angle ADB$ is $85^\circ $.
Note: Always remember to draw diagrams for this type of problems to avoid confusion. Also, the property of a circle given by “Angles inscribed by the same arc on the circumference of a circle are always EQUAL” is very much important to solve this problem.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light