
In the figure given below, CD is the diameter which meets the chord AB in E such that AE = BE = 4cm. If CE = 3cm, find the radius of the circle.
Answer
507.3k+ views
Hint: In this problem, we are given that CD is the diameter which meets the chord AB in E such that AE = BE = 4cm and if CE = 3cm, we have to find the radius of the circle. We can see in the given diagram that OB = OC = r and OE = r-3, we can find the radius of the triangle using the Pythagorean formula for the right triangle OBE.
Complete step-by-step solution:
Here we are given that CD is the diameter which meets the chord AB in E such that AE = BE = 4cm.
If CE = 3cm, we have to find the radius of the circle.
We can see in the diagram that,
OB = OC = r.
Where, OE = r-3.
We can now use the Pythagorean formula, to find the radius of the right triangle OBE.
\[\Rightarrow O{{B}^{2}}=B{{E}^{2}}+O{{E}^{2}}\]
We can now substitute the required values in the above formula, we get
\[\Rightarrow {{r}^{2}}={{\left( 4 \right)}^{2}}+{{\left( r-3 \right)}^{2}}\]
We can now simplify the above step, we get
\[\begin{align}
& \Rightarrow {{r}^{2}}=16+{{r}^{2}}-6r+9 \\
& \Rightarrow 6r=25 \\
& \Rightarrow r=\dfrac{25}{6}=4.16cm \\
\end{align}\]
Therefore, the value of radius is 4.16 cm.
Note: We should always remember that, to solve a right triangle, we can use the Pythagoras theorem, from which we can find the unknown value of the required part. We should know that Pythagora's theorem is the square of the hypotenuse equal to the sum of the square of opposite and the adjacent side.
Complete step-by-step solution:
Here we are given that CD is the diameter which meets the chord AB in E such that AE = BE = 4cm.
If CE = 3cm, we have to find the radius of the circle.
We can see in the diagram that,
OB = OC = r.
Where, OE = r-3.
We can now use the Pythagorean formula, to find the radius of the right triangle OBE.
\[\Rightarrow O{{B}^{2}}=B{{E}^{2}}+O{{E}^{2}}\]
We can now substitute the required values in the above formula, we get
\[\Rightarrow {{r}^{2}}={{\left( 4 \right)}^{2}}+{{\left( r-3 \right)}^{2}}\]
We can now simplify the above step, we get
\[\begin{align}
& \Rightarrow {{r}^{2}}=16+{{r}^{2}}-6r+9 \\
& \Rightarrow 6r=25 \\
& \Rightarrow r=\dfrac{25}{6}=4.16cm \\
\end{align}\]
Therefore, the value of radius is 4.16 cm.
Note: We should always remember that, to solve a right triangle, we can use the Pythagoras theorem, from which we can find the unknown value of the required part. We should know that Pythagora's theorem is the square of the hypotenuse equal to the sum of the square of opposite and the adjacent side.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

