
In the expansion of ${\left( {{\text{1 + x}}} \right)^{\text{n}}}$, the coefficient of ${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$ and ${\text{1}}{{\text{6}}^{{\text{th}}}}$ terms are in Arithmetic Progression. Find n.
Answer
590.4k+ views
Hint: To find n, we use binomial expansion. Then we get the coefficients of ${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$and ${\text{1}}{{\text{6}}^{{\text{th}}}}$ terms. We use the relation [If a, b, c are in A.P then 2b = a + c].
Complete Step-by-Step solution:
As we know, the binomial expansion of ${\left( {{\text{a + b}}} \right)^{\text{n}}}$is
${\left( {{\text{a + b}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{a}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{a}}^{{\text{n - 1}}}}{{\text{b}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{a}}^{{\text{n - 2}}}}{{\text{b}}^2} + .....{}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{a}}^{{\text{n - r}}}}{{\text{b}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{b}}^{\text{n}}}$
Comparing this to${\left( {{\text{1 + x}}} \right)^{\text{n}}}$, we get a = 1 and b = x, the equation becomes
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{1}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{1}}^{{\text{n - 1}}}}{{\text{x}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{1}}^{{\text{n - 2}}}}{{\text{x}}^2} + .... + {}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{1}}^{{\text{n - r}}}}{{\text{x}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}$
Coefficients of${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$ and ${\text{1}}{{\text{6}}^{{\text{th}}}}$terms are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$respectively.
And they are in A.P, so we apply the formula 2b = a + c, where a, b and c are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$ respectively. We get,
⟹${\text{2}}{}^{\text{n}}{{\text{C}}_{14}} = {}^{\text{n}}{{\text{C}}_{13}} + {}^{\text{n}}{{\text{C}}_{15}}$
We know${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r}}!\left( {{\text{n}} - {\text{r}}} \right)!}}$, using this we get
$
\Rightarrow \dfrac{{{\text{2n}}!}}{{14!\left( {{\text{n}} - 14} \right)!}} = \dfrac{{{\text{n}}!}}{{13!\left( {{\text{n}} - 13} \right)!}} + \dfrac{{{\text{n}}!}}{{15!\left( {{\text{n}} - 15} \right)!}} \\
\Rightarrow \dfrac{{\text{2}}}{{14 \times 13!\left( {{\text{n - 14}}} \right)\left( {{\text{n}} - 15} \right)!}} = \dfrac{1}{{13!\left( {{\text{n}} - 13} \right)\left( {{\text{n - 14}}} \right)\left( {{\text{n - 15}}} \right)!}} + \dfrac{1}{{15 \times 14 \times 13!\left( {{\text{n}} - 15} \right)!}} \\
$
[We converted all the denominators to (n-15)! and 13! to simplify]
$
\Rightarrow \dfrac{2}{{14\left( {{\text{n - 14}}} \right)}} = \dfrac{1}{{\left( {{\text{n - 14}}} \right)\left( {{\text{n - 13}}} \right)}} + \dfrac{1}{{14 \times 15}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{1}{7} - \dfrac{1}{{{\text{n - 13}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{{{\text{n - 13 - 7}}}}{{7{\text{n - 91}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{{{\text{n - 20}}}}{{{\text{7}}{{\text{n}}^2} - 91{\text{n - 98n + 1274}}}} = \dfrac{1}{{210}} \\
$
$
\Rightarrow 210{\text{n - 4200 = 7}}{{\text{n}}^2} - 189{\text{n + 1274}} \\
\Rightarrow {\text{7}}{{\text{n}}^2} - 399{\text{n + 5474 = 0}} \\
\Rightarrow {{\text{n}}^2} - 57{\text{n + 782 = 0}} \\
\Rightarrow {{\text{n}}^2} - 34{\text{n - 23n + 782 = 0}} \\
\Rightarrow {\text{n}}\left( {{\text{n - 34}}} \right) - 23\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow \left( {{\text{n - 23}}} \right)\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow {\text{n = 23 or 34}} \\
$
Hence n = 23 or 34.
Note: The key in solving such types of problems is having adequate knowledge in binomial expansion and formulae of Arithmetic Progression. Using the formula of the middle term of an AP to equate the given three consecutive terms is the vital step of solving this problem. We then simplify the equation and determine the value of n.
Complete Step-by-Step solution:
As we know, the binomial expansion of ${\left( {{\text{a + b}}} \right)^{\text{n}}}$is
${\left( {{\text{a + b}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{a}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{a}}^{{\text{n - 1}}}}{{\text{b}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{a}}^{{\text{n - 2}}}}{{\text{b}}^2} + .....{}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{a}}^{{\text{n - r}}}}{{\text{b}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{b}}^{\text{n}}}$
Comparing this to${\left( {{\text{1 + x}}} \right)^{\text{n}}}$, we get a = 1 and b = x, the equation becomes
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{1}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{1}}^{{\text{n - 1}}}}{{\text{x}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{1}}^{{\text{n - 2}}}}{{\text{x}}^2} + .... + {}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{1}}^{{\text{n - r}}}}{{\text{x}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}$
Coefficients of${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$ and ${\text{1}}{{\text{6}}^{{\text{th}}}}$terms are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$respectively.
And they are in A.P, so we apply the formula 2b = a + c, where a, b and c are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$ respectively. We get,
⟹${\text{2}}{}^{\text{n}}{{\text{C}}_{14}} = {}^{\text{n}}{{\text{C}}_{13}} + {}^{\text{n}}{{\text{C}}_{15}}$
We know${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r}}!\left( {{\text{n}} - {\text{r}}} \right)!}}$, using this we get
$
\Rightarrow \dfrac{{{\text{2n}}!}}{{14!\left( {{\text{n}} - 14} \right)!}} = \dfrac{{{\text{n}}!}}{{13!\left( {{\text{n}} - 13} \right)!}} + \dfrac{{{\text{n}}!}}{{15!\left( {{\text{n}} - 15} \right)!}} \\
\Rightarrow \dfrac{{\text{2}}}{{14 \times 13!\left( {{\text{n - 14}}} \right)\left( {{\text{n}} - 15} \right)!}} = \dfrac{1}{{13!\left( {{\text{n}} - 13} \right)\left( {{\text{n - 14}}} \right)\left( {{\text{n - 15}}} \right)!}} + \dfrac{1}{{15 \times 14 \times 13!\left( {{\text{n}} - 15} \right)!}} \\
$
[We converted all the denominators to (n-15)! and 13! to simplify]
$
\Rightarrow \dfrac{2}{{14\left( {{\text{n - 14}}} \right)}} = \dfrac{1}{{\left( {{\text{n - 14}}} \right)\left( {{\text{n - 13}}} \right)}} + \dfrac{1}{{14 \times 15}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{1}{7} - \dfrac{1}{{{\text{n - 13}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{{{\text{n - 13 - 7}}}}{{7{\text{n - 91}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{{{\text{n - 20}}}}{{{\text{7}}{{\text{n}}^2} - 91{\text{n - 98n + 1274}}}} = \dfrac{1}{{210}} \\
$
$
\Rightarrow 210{\text{n - 4200 = 7}}{{\text{n}}^2} - 189{\text{n + 1274}} \\
\Rightarrow {\text{7}}{{\text{n}}^2} - 399{\text{n + 5474 = 0}} \\
\Rightarrow {{\text{n}}^2} - 57{\text{n + 782 = 0}} \\
\Rightarrow {{\text{n}}^2} - 34{\text{n - 23n + 782 = 0}} \\
\Rightarrow {\text{n}}\left( {{\text{n - 34}}} \right) - 23\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow \left( {{\text{n - 23}}} \right)\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow {\text{n = 23 or 34}} \\
$
Hence n = 23 or 34.
Note: The key in solving such types of problems is having adequate knowledge in binomial expansion and formulae of Arithmetic Progression. Using the formula of the middle term of an AP to equate the given three consecutive terms is the vital step of solving this problem. We then simplify the equation and determine the value of n.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Which is the main party in the National Democratic class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

