
In the expansion of ${\left( {{\text{1 + x}}} \right)^{\text{n}}}$, the coefficient of ${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$ and ${\text{1}}{{\text{6}}^{{\text{th}}}}$ terms are in Arithmetic Progression. Find n.
Answer
596.1k+ views
Hint: To find n, we use binomial expansion. Then we get the coefficients of ${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$and ${\text{1}}{{\text{6}}^{{\text{th}}}}$ terms. We use the relation [If a, b, c are in A.P then 2b = a + c].
Complete Step-by-Step solution:
As we know, the binomial expansion of ${\left( {{\text{a + b}}} \right)^{\text{n}}}$is
${\left( {{\text{a + b}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{a}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{a}}^{{\text{n - 1}}}}{{\text{b}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{a}}^{{\text{n - 2}}}}{{\text{b}}^2} + .....{}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{a}}^{{\text{n - r}}}}{{\text{b}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{b}}^{\text{n}}}$
Comparing this to${\left( {{\text{1 + x}}} \right)^{\text{n}}}$, we get a = 1 and b = x, the equation becomes
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{1}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{1}}^{{\text{n - 1}}}}{{\text{x}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{1}}^{{\text{n - 2}}}}{{\text{x}}^2} + .... + {}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{1}}^{{\text{n - r}}}}{{\text{x}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}$
Coefficients of${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$ and ${\text{1}}{{\text{6}}^{{\text{th}}}}$terms are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$respectively.
And they are in A.P, so we apply the formula 2b = a + c, where a, b and c are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$ respectively. We get,
⟹${\text{2}}{}^{\text{n}}{{\text{C}}_{14}} = {}^{\text{n}}{{\text{C}}_{13}} + {}^{\text{n}}{{\text{C}}_{15}}$
We know${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r}}!\left( {{\text{n}} - {\text{r}}} \right)!}}$, using this we get
$
\Rightarrow \dfrac{{{\text{2n}}!}}{{14!\left( {{\text{n}} - 14} \right)!}} = \dfrac{{{\text{n}}!}}{{13!\left( {{\text{n}} - 13} \right)!}} + \dfrac{{{\text{n}}!}}{{15!\left( {{\text{n}} - 15} \right)!}} \\
\Rightarrow \dfrac{{\text{2}}}{{14 \times 13!\left( {{\text{n - 14}}} \right)\left( {{\text{n}} - 15} \right)!}} = \dfrac{1}{{13!\left( {{\text{n}} - 13} \right)\left( {{\text{n - 14}}} \right)\left( {{\text{n - 15}}} \right)!}} + \dfrac{1}{{15 \times 14 \times 13!\left( {{\text{n}} - 15} \right)!}} \\
$
[We converted all the denominators to (n-15)! and 13! to simplify]
$
\Rightarrow \dfrac{2}{{14\left( {{\text{n - 14}}} \right)}} = \dfrac{1}{{\left( {{\text{n - 14}}} \right)\left( {{\text{n - 13}}} \right)}} + \dfrac{1}{{14 \times 15}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{1}{7} - \dfrac{1}{{{\text{n - 13}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{{{\text{n - 13 - 7}}}}{{7{\text{n - 91}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{{{\text{n - 20}}}}{{{\text{7}}{{\text{n}}^2} - 91{\text{n - 98n + 1274}}}} = \dfrac{1}{{210}} \\
$
$
\Rightarrow 210{\text{n - 4200 = 7}}{{\text{n}}^2} - 189{\text{n + 1274}} \\
\Rightarrow {\text{7}}{{\text{n}}^2} - 399{\text{n + 5474 = 0}} \\
\Rightarrow {{\text{n}}^2} - 57{\text{n + 782 = 0}} \\
\Rightarrow {{\text{n}}^2} - 34{\text{n - 23n + 782 = 0}} \\
\Rightarrow {\text{n}}\left( {{\text{n - 34}}} \right) - 23\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow \left( {{\text{n - 23}}} \right)\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow {\text{n = 23 or 34}} \\
$
Hence n = 23 or 34.
Note: The key in solving such types of problems is having adequate knowledge in binomial expansion and formulae of Arithmetic Progression. Using the formula of the middle term of an AP to equate the given three consecutive terms is the vital step of solving this problem. We then simplify the equation and determine the value of n.
Complete Step-by-Step solution:
As we know, the binomial expansion of ${\left( {{\text{a + b}}} \right)^{\text{n}}}$is
${\left( {{\text{a + b}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{a}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{a}}^{{\text{n - 1}}}}{{\text{b}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{a}}^{{\text{n - 2}}}}{{\text{b}}^2} + .....{}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{a}}^{{\text{n - r}}}}{{\text{b}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{b}}^{\text{n}}}$
Comparing this to${\left( {{\text{1 + x}}} \right)^{\text{n}}}$, we get a = 1 and b = x, the equation becomes
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$ = ${}^{\text{n}}{{\text{C}}_0}{{\text{1}}^{\text{n}}} + {}^{\text{n}}{{\text{C}}_1}{{\text{1}}^{{\text{n - 1}}}}{{\text{x}}^1} + {}^{\text{n}}{{\text{C}}_2}{{\text{1}}^{{\text{n - 2}}}}{{\text{x}}^2} + .... + {}^{\text{n}}{{\text{C}}_{\text{r}}}{{\text{1}}^{{\text{n - r}}}}{{\text{x}}^{\text{r}}} + ... + {}^{\text{n}}{{\text{C}}_{\text{n}}}{{\text{x}}^{\text{n}}}$
Coefficients of${14^{{\text{th}}}}$, ${\text{1}}{{\text{5}}^{{\text{th}}}}$ and ${\text{1}}{{\text{6}}^{{\text{th}}}}$terms are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$respectively.
And they are in A.P, so we apply the formula 2b = a + c, where a, b and c are ${}^{\text{n}}{{\text{C}}_{{\text{13}}}},{\text{ }}{}^{\text{n}}{{\text{C}}_{{\text{14}}}}{\text{ and }}{}^{\text{n}}{{\text{C}}_{{\text{15}}}}$ respectively. We get,
⟹${\text{2}}{}^{\text{n}}{{\text{C}}_{14}} = {}^{\text{n}}{{\text{C}}_{13}} + {}^{\text{n}}{{\text{C}}_{15}}$
We know${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r}}!\left( {{\text{n}} - {\text{r}}} \right)!}}$, using this we get
$
\Rightarrow \dfrac{{{\text{2n}}!}}{{14!\left( {{\text{n}} - 14} \right)!}} = \dfrac{{{\text{n}}!}}{{13!\left( {{\text{n}} - 13} \right)!}} + \dfrac{{{\text{n}}!}}{{15!\left( {{\text{n}} - 15} \right)!}} \\
\Rightarrow \dfrac{{\text{2}}}{{14 \times 13!\left( {{\text{n - 14}}} \right)\left( {{\text{n}} - 15} \right)!}} = \dfrac{1}{{13!\left( {{\text{n}} - 13} \right)\left( {{\text{n - 14}}} \right)\left( {{\text{n - 15}}} \right)!}} + \dfrac{1}{{15 \times 14 \times 13!\left( {{\text{n}} - 15} \right)!}} \\
$
[We converted all the denominators to (n-15)! and 13! to simplify]
$
\Rightarrow \dfrac{2}{{14\left( {{\text{n - 14}}} \right)}} = \dfrac{1}{{\left( {{\text{n - 14}}} \right)\left( {{\text{n - 13}}} \right)}} + \dfrac{1}{{14 \times 15}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{1}{7} - \dfrac{1}{{{\text{n - 13}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{1}{{{\text{n - 14}}}}\left[ {\dfrac{{{\text{n - 13 - 7}}}}{{7{\text{n - 91}}}}} \right] = \dfrac{1}{{210}} \\
\Rightarrow \dfrac{{{\text{n - 20}}}}{{{\text{7}}{{\text{n}}^2} - 91{\text{n - 98n + 1274}}}} = \dfrac{1}{{210}} \\
$
$
\Rightarrow 210{\text{n - 4200 = 7}}{{\text{n}}^2} - 189{\text{n + 1274}} \\
\Rightarrow {\text{7}}{{\text{n}}^2} - 399{\text{n + 5474 = 0}} \\
\Rightarrow {{\text{n}}^2} - 57{\text{n + 782 = 0}} \\
\Rightarrow {{\text{n}}^2} - 34{\text{n - 23n + 782 = 0}} \\
\Rightarrow {\text{n}}\left( {{\text{n - 34}}} \right) - 23\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow \left( {{\text{n - 23}}} \right)\left( {{\text{n - 34}}} \right) = 0 \\
\Rightarrow {\text{n = 23 or 34}} \\
$
Hence n = 23 or 34.
Note: The key in solving such types of problems is having adequate knowledge in binomial expansion and formulae of Arithmetic Progression. Using the formula of the middle term of an AP to equate the given three consecutive terms is the vital step of solving this problem. We then simplify the equation and determine the value of n.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

