
In the cross AaBBcc
aaBbCc, what is the probability of an offspring that is aaBbcc?
(a) 1/2
(b) 1/4
(c) 1/8
(d) 1/16
Answer
578.4k+ views
Hint: In a trihybrid cross, each gamete gets one of the alleles from each parent. Hence, we perform such crosses in punnett squares. Trihybrid cross follows all the laws given by Mendel i.e. law of segregation of gametes, law of dominance and law of independent assortment.
Complete answer:
Here, let us break down the given problem into small parts. First, we will consider a cross between Aa and aa. We will look for priority of getting a homozygous individual (since we want the final genotype to be aaBbcc.)
So, the probability of getting a homozygote (aa) is 2/4 i.e. 1/2.
Similarly, let us look into the cross between BB and Bb.
So, the probability of getting a heterozygote (Bb) is 2/4 i.e. 1/2.
Last part of the given genotype-aaBbcc is ‘cc’. Now, let us look into a cross between parental parts cc and Cc.
So, the probability of getting a homozygote (cc) is 2/4 i.e. 1/2.
In order to get all of them happening together, we will now reduce the overall chance for each genotype. So, we will multiply all three probabilities as - \[\frac{1}{2}{\text{ }} \times \frac{1}{2} \times \frac{1}{2}{\text{ = }}\frac{1}{8}\]
So, the correct answer is ‘1/8.’
Note: Traditional method of solving this problem can be by using the punnett square. So, if we look into the punnett square of a normal trihybrid cross, we can get the probability by looking into the genotype.
Complete answer:
Here, let us break down the given problem into small parts. First, we will consider a cross between Aa and aa. We will look for priority of getting a homozygous individual (since we want the final genotype to be aaBbcc.)
| A | a | |
| a | AaHeterozygote | aaHomozygote |
| a | AaHeterozygote | aaHomozygote |
So, the probability of getting a homozygote (aa) is 2/4 i.e. 1/2.
Similarly, let us look into the cross between BB and Bb.
| B | B | |
| B | BBHomozygote | BBHomozygote |
| b | BbHeterozygote | BbHeterozygote |
So, the probability of getting a heterozygote (Bb) is 2/4 i.e. 1/2.
Last part of the given genotype-aaBbcc is ‘cc’. Now, let us look into a cross between parental parts cc and Cc.
| C | c | |
| c | CcHeterozygote | ccHomozygote |
| c | CcHeterozygote | ccHomozygote |
So, the probability of getting a homozygote (cc) is 2/4 i.e. 1/2.
In order to get all of them happening together, we will now reduce the overall chance for each genotype. So, we will multiply all three probabilities as - \[\frac{1}{2}{\text{ }} \times \frac{1}{2} \times \frac{1}{2}{\text{ = }}\frac{1}{8}\]
So, the correct answer is ‘1/8.’
Note: Traditional method of solving this problem can be by using the punnett square. So, if we look into the punnett square of a normal trihybrid cross, we can get the probability by looking into the genotype.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

