
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
Answer
578.7k+ views
Hint: We are given a word ASSASSINATION which consists of 13 letters with repeated terms. We will first pick all the S together and make a single unit and then we will check how many digits are left as we can see N, I and A are repeated and so we use the formula \[\dfrac{n!}{{{P}_{1}}!{{P}_{2}}!{{P}_{3}}!}\] to find the number of words formed.
Complete step-by-step answer:
We are given a word ASSASSINATION which is 13 letter word. First we will check which letter appears how many times. In ASSASSINATION, we see that S comes 4 times, A comes 3 times, I comes 2 times and N comes 2 times.
Now, we are asked to find all those words formed using the letters of the word ASSASSINATION such that all the S’s are together.
So, first of all, we keep all 4 S together and consider it as 1 unit – SSSS.
Now, we can see that we are left with 10 letters, i.e. SSSS AAANNIITO.
Now, we have to make words using these 10 letters. We have to calculate how many letters can be formed using these 10 letters.
As we can see that in the given 10 letters, SSSS AAANNIITO, some letters are repeated. So, for such cases we have the formula,
\[\text{Number of words formed}=\dfrac{n!}{{{P}_{1}}!{{P}_{2}}!{{P}_{3}}!}\]
where n is the total number, \[{{P}_{1}}\] is the number of times the first letter is repeated, \[{{P}_{2}}\] is the number of times the second letter is repeated and so on.
Now, as we know that A is repeated 3 times, so,
\[{{P}_{1}}=3\]
And N is repeated 2 times, so,
\[{{P}_{2}}=2\]
And lastly I is repeated as 2 times, so,
\[{{P}_{3}}=2\]
And the total letters we have is 10. So, n = 10.
Now, putting these in the above formula, we get,
\[\Rightarrow \text{Number of words formed}=\dfrac{10!}{3!2!2!}\]
Now, simplifying we get,
\[\Rightarrow \text{Number of words formed}=\dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3!}{3!2!2!}\]
Cancelling the like terms, we get,
\[\Rightarrow \text{Number of words formed}=10\times 9\times 8\times 7\times 6\times 5\]
\[\Rightarrow \text{Number of words formed}=151200\]
So, we have that number of words where all the S’s are together are 151200.
Note: As the letters are being repeated, so we cannot use n! to find the total word formed. We have to cancel the possible repeated words. So, we use the formula,
\[\text{Number of words formed}=\dfrac{n!}{{{P}_{1}}!{{P}_{2}}!{{P}_{3}}!......{{P}_{n}}!}\]
When we put all the S together and make a single unit, it will add up with the rest of the letter. While making a new word, we can shift its location and make new words, it is contributing to the words. So, we have a total 9 + 1 = 10 letters.
Complete step-by-step answer:
We are given a word ASSASSINATION which is 13 letter word. First we will check which letter appears how many times. In ASSASSINATION, we see that S comes 4 times, A comes 3 times, I comes 2 times and N comes 2 times.
Now, we are asked to find all those words formed using the letters of the word ASSASSINATION such that all the S’s are together.
So, first of all, we keep all 4 S together and consider it as 1 unit – SSSS.
Now, we can see that we are left with 10 letters, i.e. SSSS AAANNIITO.
Now, we have to make words using these 10 letters. We have to calculate how many letters can be formed using these 10 letters.
As we can see that in the given 10 letters, SSSS AAANNIITO, some letters are repeated. So, for such cases we have the formula,
\[\text{Number of words formed}=\dfrac{n!}{{{P}_{1}}!{{P}_{2}}!{{P}_{3}}!}\]
where n is the total number, \[{{P}_{1}}\] is the number of times the first letter is repeated, \[{{P}_{2}}\] is the number of times the second letter is repeated and so on.
Now, as we know that A is repeated 3 times, so,
\[{{P}_{1}}=3\]
And N is repeated 2 times, so,
\[{{P}_{2}}=2\]
And lastly I is repeated as 2 times, so,
\[{{P}_{3}}=2\]
And the total letters we have is 10. So, n = 10.
Now, putting these in the above formula, we get,
\[\Rightarrow \text{Number of words formed}=\dfrac{10!}{3!2!2!}\]
Now, simplifying we get,
\[\Rightarrow \text{Number of words formed}=\dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3!}{3!2!2!}\]
Cancelling the like terms, we get,
\[\Rightarrow \text{Number of words formed}=10\times 9\times 8\times 7\times 6\times 5\]
\[\Rightarrow \text{Number of words formed}=151200\]
So, we have that number of words where all the S’s are together are 151200.
Note: As the letters are being repeated, so we cannot use n! to find the total word formed. We have to cancel the possible repeated words. So, we use the formula,
\[\text{Number of words formed}=\dfrac{n!}{{{P}_{1}}!{{P}_{2}}!{{P}_{3}}!......{{P}_{n}}!}\]
When we put all the S together and make a single unit, it will add up with the rest of the letter. While making a new word, we can shift its location and make new words, it is contributing to the words. So, we have a total 9 + 1 = 10 letters.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

