
In fig, \[O\] is a point in the interior of a triangle \[\Delta ABC\], \[OD \bot BC,OE \bot AC\] and \[OF \bot AB\]. Show that,
1. \[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + C{E^2}\]
2. \[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Answer
587.7k+ views
Hint: At first, we need a construction.
By the given condition and Pythagoras theorem we can prove the required proof.
Pythagoras theorem states that, for a right-angle triangle, the value of the square of the hypotenuse is the sum of the square of base and the square of perpendicular.
\[{\text{Hypotenus}}{{\text{e}}^{\text{2}}}{\text{ = bas}}{{\text{e}}^{\text{2}}}{\text{ + perpendicula}}{{\text{r}}^{\text{2}}}\]
Then, we will add or subtract the conditions as per the need.
Complete step-by-step answer:
It is given that; \[O\] is a point in the interior of a triangle \[\Delta ABC\], \[OD \bot BC,OE \bot AC\] and \[OF \bot AB\].
We have to show that,
1. \[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + C{E^2}\]
2. \[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Pythagoras theorem states that, for a right-angle triangle, the value of the square of the hypotenuse is the sum of the square of base and the square of perpendicular.
That means,
\[{\text{Hypotenus}}{{\text{e}}^{\text{2}}}{\text{ = bas}}{{\text{e}}^{\text{2}}}{\text{ + perpendicula}}{{\text{r}}^{\text{2}}}\]
Let us join \[O,A;O,B;O,C\].
From the \[\Delta AOE\],
Using Pythagoras theorem, we get,
\[A{O^2} = A{E^2} + O{E^2}\]… (1)
From the \[\Delta AOF\],
Using Pythagoras theorem, we get,
\[A{O^2} = A{F^2} + O{F^2}\]… (2)
From the \[\Delta FBO\],
Using Pythagoras theorem, we get,
\[B{O^2} = B{F^2} + F{O^2}\]… (3)
From the \[\Delta BDO\],
Using Pythagoras theorem, we get,
\[B{O^2} = B{D^2} + O{D^2}\]… (4)
From the \[\Delta DOC\],
Using Pythagoras theorem, we get,
\[C{O^2} = O{D^2} + D{C^2}\]… (5)
From the \[\Delta OCE\],
Using Pythagoras theorem, we get,
\[C{O^2} = O{E^2} + E{C^2}\]… (6)
From the \[\Delta ABC\],
Using Pythagoras theorem, we get,
\[A{C^2} = A{B^2} + B{C^2}\]… (7)
Adding (2), (4) and (6) we get,
\[O{A^2} + O{B^2} + O{C^2} = A{F^2} + O{F^2} + B{D^2} + O{D^2} + O{E^2} + E{C^2}\]
Simplifying we get,
\[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + E{C^2}\]
Again, subtracting (2) and (1) we get,
\[0 = A{F^2} + O{F^2} - A{E^2} - O{E^2}\]
So, we have, \[A{F^2} + O{F^2} = A{E^2} + O{E^2}\]… (8)
Subtracting (4) and (3) we get,
\[0 = B{D^2} + O{D^2} - B{F^2} - O{F^2}\]
So, we have, \[B{D^2} + O{D^2} = B{F^2} + O{F^2}\]… (9)
Subtracting (6) and (5) we get,
\[0 = O{E^2} + E{C^2} - O{D^2} - D{C^2}\]
So, we have, \[O{E^2} + E{C^2} = O{D^2} + D{C^2}\]… (10)
Adding (8), (9) and (10) we get,
\[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Hence,
\[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + C{E^2}\]
\[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Here’s the proof.
Note: We require a construction to prove the problem.
We have to join \[O,A;O,B;O,C\].
Pythagoras theorem states that, for a right-angle triangle, the value of the square of the hypotenuse is the sum of the square of base and the square of perpendicular.
So, \[{\text{Hypotenus}}{{\text{e}}^{\text{2}}}{\text{ = bas}}{{\text{e}}^{\text{2}}}{\text{ + perpendicula}}{{\text{r}}^{\text{2}}}\]
By the given condition and Pythagoras theorem we can prove the required proof.
Pythagoras theorem states that, for a right-angle triangle, the value of the square of the hypotenuse is the sum of the square of base and the square of perpendicular.
\[{\text{Hypotenus}}{{\text{e}}^{\text{2}}}{\text{ = bas}}{{\text{e}}^{\text{2}}}{\text{ + perpendicula}}{{\text{r}}^{\text{2}}}\]
Then, we will add or subtract the conditions as per the need.
Complete step-by-step answer:
It is given that; \[O\] is a point in the interior of a triangle \[\Delta ABC\], \[OD \bot BC,OE \bot AC\] and \[OF \bot AB\].
We have to show that,
1. \[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + C{E^2}\]
2. \[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Pythagoras theorem states that, for a right-angle triangle, the value of the square of the hypotenuse is the sum of the square of base and the square of perpendicular.
That means,
\[{\text{Hypotenus}}{{\text{e}}^{\text{2}}}{\text{ = bas}}{{\text{e}}^{\text{2}}}{\text{ + perpendicula}}{{\text{r}}^{\text{2}}}\]
Let us join \[O,A;O,B;O,C\].
From the \[\Delta AOE\],
Using Pythagoras theorem, we get,
\[A{O^2} = A{E^2} + O{E^2}\]… (1)
From the \[\Delta AOF\],
Using Pythagoras theorem, we get,
\[A{O^2} = A{F^2} + O{F^2}\]… (2)
From the \[\Delta FBO\],
Using Pythagoras theorem, we get,
\[B{O^2} = B{F^2} + F{O^2}\]… (3)
From the \[\Delta BDO\],
Using Pythagoras theorem, we get,
\[B{O^2} = B{D^2} + O{D^2}\]… (4)
From the \[\Delta DOC\],
Using Pythagoras theorem, we get,
\[C{O^2} = O{D^2} + D{C^2}\]… (5)
From the \[\Delta OCE\],
Using Pythagoras theorem, we get,
\[C{O^2} = O{E^2} + E{C^2}\]… (6)
From the \[\Delta ABC\],
Using Pythagoras theorem, we get,
\[A{C^2} = A{B^2} + B{C^2}\]… (7)
Adding (2), (4) and (6) we get,
\[O{A^2} + O{B^2} + O{C^2} = A{F^2} + O{F^2} + B{D^2} + O{D^2} + O{E^2} + E{C^2}\]
Simplifying we get,
\[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + E{C^2}\]
Again, subtracting (2) and (1) we get,
\[0 = A{F^2} + O{F^2} - A{E^2} - O{E^2}\]
So, we have, \[A{F^2} + O{F^2} = A{E^2} + O{E^2}\]… (8)
Subtracting (4) and (3) we get,
\[0 = B{D^2} + O{D^2} - B{F^2} - O{F^2}\]
So, we have, \[B{D^2} + O{D^2} = B{F^2} + O{F^2}\]… (9)
Subtracting (6) and (5) we get,
\[0 = O{E^2} + E{C^2} - O{D^2} - D{C^2}\]
So, we have, \[O{E^2} + E{C^2} = O{D^2} + D{C^2}\]… (10)
Adding (8), (9) and (10) we get,
\[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Hence,
\[O{A^2} + O{B^2} + O{C^2} - O{D^2} - O{E^2} - O{F^2} = A{F^2} + B{D^2} + C{E^2}\]
\[A{F^2} + B{D^2} + C{E^2} = A{E^2} + C{D^2} + B{F^2}\]
Here’s the proof.
Note: We require a construction to prove the problem.
We have to join \[O,A;O,B;O,C\].
Pythagoras theorem states that, for a right-angle triangle, the value of the square of the hypotenuse is the sum of the square of base and the square of perpendicular.
So, \[{\text{Hypotenus}}{{\text{e}}^{\text{2}}}{\text{ = bas}}{{\text{e}}^{\text{2}}}{\text{ + perpendicula}}{{\text{r}}^{\text{2}}}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

