
In \[\Delta ABC\], least value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] is equal to
A.\[\dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\]
B.\[\dfrac{\pi }{3}{{e}^{\dfrac{\pi }{3}}}\]
C.\[\dfrac{\pi }{9}{{e}^{\dfrac{\pi }{3}}}\]
D.None of these
Answer
617.1k+ views
Hint:Use the property or relation of Arithmetic mean and Geometric mean which can be given as
\[AM\ge GM\](only for positive numbers).Use the fundamental property of a triangle that the sum of interior angles of a triangle is \[{{180}^{\circ }}\]. So, the value of A + B + C is \[180\left( \pi \right)\].
Complete step by step answer:
We know that the Arithmetic mean of n numbers is greater than or equals the Geometric mean of n numbers. Hence, we get
\[\begin{align}
& A.M\ge G.M \\
& \dfrac{{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}}{n}\ge {{\left( {{a}_{1}}.{{a}_{2}}......{{a}_{n}} \right)}^{\dfrac{1}{n}}}-(i) \\
\end{align}\]
Now, we know that A, B, C are representing angles of triangles ABC and \[{{e}^{A}},{{e}^{B}}\] and \[{{e}^{C}}\] will also be a positive value.
Hence, we can apply \[AM\ge GM\]relation with the values \[\dfrac{{{e}^{A}}}{A},\dfrac{{{e}^{B}}}{B},\dfrac{{{e}^{C}}}{C}\] from the equation (i), So we get,
\[\dfrac{\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}}{3}\ge {{\left( \dfrac{{{e}^{A}}}{A}.\dfrac{{{e}^{B}}}{B}.\dfrac{{{e}^{C}}}{C} \right)}^{\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3{{\left( \dfrac{{{e}^{A}}}{A}.\dfrac{{{e}^{B}}}{B}.\dfrac{{{e}^{C}}}{C} \right)}^{\dfrac{1}{3}}}-(ii)\]
Now, we can use property of surds given as,
\[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Hence, we can re – write the equation (ii) as
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3{{\left( \dfrac{{{e}^{A+B+C}}}{ABC} \right)}^{\dfrac{1}{3}}}\]
Now we know the fundamental property of a triangle is given as “sum of all interior angles of a triangle is \[{{180}^{\circ }}\]”.
Hence, we can replace A + B + C in the above equation by \[{{180}^{\circ }}\]or \[\pi \](radian), we get
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3{{\left( \dfrac{{{e}^{\pi }}}{ABC} \right)}^{\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3\dfrac{{{\left( {{e}^{\pi }} \right)}^{\dfrac{1}{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\]
Now we can use property of surds \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\] in the above equation with the term \[{{\left( {{e}^{\pi }} \right)}^{\dfrac{1}{3}}}\]; So, we get
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3\dfrac{{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}-(iii)\]
Now A, B, C are angles of triangles so we can apply property \[AM\ge GM\](equation (i)) with the values A, B, C. Hence, we get
\[\dfrac{A+B+C}{3}\ge {{\left( ABC \right)}^{\dfrac{1}{3}}}-(iv)\]
Now, put \[A+B+C=\pi \]using the fundamental property of a triangle. Hence, we can simplify equation (iv) as
\[\dfrac{\pi }{3}\ge {{\left( ABC \right)}^{\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{\pi }{3}\ge \dfrac{{{\left( ABC \right)}^{\dfrac{1}{3}}}}{1}\]
Now, we can change the inequality of above equation by reversing the fractions as we know,
If \[\dfrac{a}{b}>\dfrac{c}{d}\] then \[\dfrac{b}{a}>\dfrac{d}{c}\], we get
\[\dfrac{3}{\pi }\le \dfrac{1}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\].
Now, multiply by \[3{{e}^{\dfrac{\pi }{3}}}\] on both sides of the above equation and inequality will not change because \[3{{e}^{\dfrac{\pi }{3}}}\] is a positive value as angle of \[{{e}^{x}}\]is \[\left( 0,\infty \right)\], we get
\[\begin{align}
& \dfrac{3}{\pi }\times 3{{e}^{\dfrac{\pi }{3}}}\le \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}} \\
& \dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\le \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}-(v) \\
\end{align}\]
Now, we know that value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] is greater than \[\dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\] from equation (iii) and value of \[\dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\] is greater than \[\dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\] from the equation (v). Hence, we can write the equation combining the equations (iii) and (v) as,
\[\begin{align}
& \dfrac{3}{\pi }\times 3{{e}^{\dfrac{\pi }{3}}}\le \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}} \\
& \dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\ge \dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}} \\
\end{align}\]
Hence, we can get least value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] by writing the inequality between first term and last term. Hence, we get
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge \dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\]
So, least value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] is \[\dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\].
Note: One may try to calculate exact value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\], which will be very complex approach and difficult too. As we need only the least value of the given expression, so we can relate it with \[AM\ge GM\] and it is the key point of the question as well.
Applying \[AM\ge GM\] property twice is the key point of the question.
\[AM\ge GM\](only for positive numbers).Use the fundamental property of a triangle that the sum of interior angles of a triangle is \[{{180}^{\circ }}\]. So, the value of A + B + C is \[180\left( \pi \right)\].
Complete step by step answer:
We know that the Arithmetic mean of n numbers is greater than or equals the Geometric mean of n numbers. Hence, we get
\[\begin{align}
& A.M\ge G.M \\
& \dfrac{{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}}{n}\ge {{\left( {{a}_{1}}.{{a}_{2}}......{{a}_{n}} \right)}^{\dfrac{1}{n}}}-(i) \\
\end{align}\]
Now, we know that A, B, C are representing angles of triangles ABC and \[{{e}^{A}},{{e}^{B}}\] and \[{{e}^{C}}\] will also be a positive value.
Hence, we can apply \[AM\ge GM\]relation with the values \[\dfrac{{{e}^{A}}}{A},\dfrac{{{e}^{B}}}{B},\dfrac{{{e}^{C}}}{C}\] from the equation (i), So we get,
\[\dfrac{\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}}{3}\ge {{\left( \dfrac{{{e}^{A}}}{A}.\dfrac{{{e}^{B}}}{B}.\dfrac{{{e}^{C}}}{C} \right)}^{\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3{{\left( \dfrac{{{e}^{A}}}{A}.\dfrac{{{e}^{B}}}{B}.\dfrac{{{e}^{C}}}{C} \right)}^{\dfrac{1}{3}}}-(ii)\]
Now, we can use property of surds given as,
\[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Hence, we can re – write the equation (ii) as
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3{{\left( \dfrac{{{e}^{A+B+C}}}{ABC} \right)}^{\dfrac{1}{3}}}\]
Now we know the fundamental property of a triangle is given as “sum of all interior angles of a triangle is \[{{180}^{\circ }}\]”.
Hence, we can replace A + B + C in the above equation by \[{{180}^{\circ }}\]or \[\pi \](radian), we get
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3{{\left( \dfrac{{{e}^{\pi }}}{ABC} \right)}^{\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3\dfrac{{{\left( {{e}^{\pi }} \right)}^{\dfrac{1}{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\]
Now we can use property of surds \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\] in the above equation with the term \[{{\left( {{e}^{\pi }} \right)}^{\dfrac{1}{3}}}\]; So, we get
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge 3\dfrac{{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}-(iii)\]
Now A, B, C are angles of triangles so we can apply property \[AM\ge GM\](equation (i)) with the values A, B, C. Hence, we get
\[\dfrac{A+B+C}{3}\ge {{\left( ABC \right)}^{\dfrac{1}{3}}}-(iv)\]
Now, put \[A+B+C=\pi \]using the fundamental property of a triangle. Hence, we can simplify equation (iv) as
\[\dfrac{\pi }{3}\ge {{\left( ABC \right)}^{\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{\pi }{3}\ge \dfrac{{{\left( ABC \right)}^{\dfrac{1}{3}}}}{1}\]
Now, we can change the inequality of above equation by reversing the fractions as we know,
If \[\dfrac{a}{b}>\dfrac{c}{d}\] then \[\dfrac{b}{a}>\dfrac{d}{c}\], we get
\[\dfrac{3}{\pi }\le \dfrac{1}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\].
Now, multiply by \[3{{e}^{\dfrac{\pi }{3}}}\] on both sides of the above equation and inequality will not change because \[3{{e}^{\dfrac{\pi }{3}}}\] is a positive value as angle of \[{{e}^{x}}\]is \[\left( 0,\infty \right)\], we get
\[\begin{align}
& \dfrac{3}{\pi }\times 3{{e}^{\dfrac{\pi }{3}}}\le \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}} \\
& \dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\le \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}-(v) \\
\end{align}\]
Now, we know that value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] is greater than \[\dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\] from equation (iii) and value of \[\dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\] is greater than \[\dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\] from the equation (v). Hence, we can write the equation combining the equations (iii) and (v) as,
\[\begin{align}
& \dfrac{3}{\pi }\times 3{{e}^{\dfrac{\pi }{3}}}\le \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}} \\
& \dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge \dfrac{3{{e}^{\dfrac{\pi }{3}}}}{{{\left( ABC \right)}^{\dfrac{1}{3}}}}\ge \dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}} \\
\end{align}\]
Hence, we can get least value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] by writing the inequality between first term and last term. Hence, we get
\[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\ge \dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\]
So, least value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\] is \[\dfrac{9}{\pi }{{e}^{\dfrac{\pi }{3}}}\].
Note: One may try to calculate exact value of \[\dfrac{{{e}^{A}}}{A}+\dfrac{{{e}^{B}}}{B}+\dfrac{{{e}^{C}}}{C}\], which will be very complex approach and difficult too. As we need only the least value of the given expression, so we can relate it with \[AM\ge GM\] and it is the key point of the question as well.
Applying \[AM\ge GM\] property twice is the key point of the question.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

