
In $\Delta ABC$ if $\angle C=3\angle B$ and $\angle B=\dfrac{2}{3}\left[ \angle A+\angle B \right]$, find the values of $\angle A,\angle B,\angle C$ respectively.
Answer
568.2k+ views
Hint: We know that the sum of angles in a triangle is equal to $180{}^\circ $. From the given data we will convert the three angles into one variable and find the sum of the angles in the triangle and equate them to $180{}^\circ $ . Then we will get the value of that variable and using that value we will find the angles of the triangle.
Complete step-by-step answer:
Given that, In $\Delta ABC$ ,$\angle C=3\angle B$ and $\angle B=\dfrac{2}{3}\left[ \angle A+\angle B \right]$
The $\Delta ABC$ is represented in below picture
Complete step-by-step answer:
Given that, In $\Delta ABC$ ,$\angle C=3\angle B$ and $\angle B=\dfrac{2}{3}\left[ \angle A+\angle B \right]$
The $\Delta ABC$ is represented in below picture
Let the angles in the above triangle are
$\angle CAB=\alpha $
$\angle ABC=\beta $
$\angle ACB=\gamma $
From the given data
$\begin{align}
& \angle ABC=\beta =\dfrac{2}{3}\left[ \angle CAB+\angle ABC \right] \\
& \beta =\dfrac{2}{3}\left[ \alpha +\beta \right] \\
& \beta -\dfrac{2}{3}\beta =\dfrac{2}{3}\alpha \\
& \dfrac{1}{3}\beta =\dfrac{2}{3}\alpha
\end{align}$
Multiplying the above equation with $3$, then
$\begin{align}
& \beta =2\alpha \\
& \alpha =\dfrac{1}{2}\beta .....\left( \text{i} \right)
\end{align}$
Now given that
$\begin{align}
& \angle ACB=3\angle ABC \\
& \gamma =3\beta ......\left( \text{ii} \right)
\end{align}$
Finding the sum of the angles in the triangle,
$\angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma $
From equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ substituting the values of $\alpha ,\gamma $ in the above equation, then
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\dfrac{1}{2}\beta +\beta +3\beta \\
& \angle CAB+\angle ABC+\angle ACB=\dfrac{9}{2}\beta .......\left( \text{iii} \right)
\end{align}$
But we know that the sum of angles in a triangle is equal to $180{}^\circ $, so
$\angle CAB+\angle ABC+\angle ACB=180{}^\circ $
From equation $\left( \text{iii} \right)$ substituting the value of $\angle CAB+\angle ABC+\angle ACB$ in the above equation, then
$\begin{align}
& \dfrac{9}{2}\beta =180{}^\circ \\
& 9\beta =360{}^\circ \\
& \beta =\dfrac{360{}^\circ }{9} \\
& =40{}^\circ
\end{align}$
From equation $\left( \text{i} \right)$ the value of $\alpha $ is
$\begin{align}
& \alpha =\dfrac{1}{2}\beta \\
& =\dfrac{1}{2}\left( 40{}^\circ \right) \\
& =20{}^\circ
\end{align}$
From equation $\left( \text{ii} \right)$ the value of $\gamma $ is
$\begin{align}
& \gamma =3\beta \\
& =3\left( 40{}^\circ \right) \\
& =120{}^\circ
\end{align}$
So, the angles of the triangle are
$\begin{align}
& \angle CAB=\angle A =\alpha \\
& \angle A=20{}^\circ
\end{align}$
$\begin{align}
& \angle ABC=\angle B =\beta \\
& \angle B=40{}^\circ
\end{align}$
$\begin{align}
& \angle ACB=\angle C=\gamma \\
& \angle C=120{}^\circ
\end{align}$
Note: We can convert all the variables to any one of the variables either $\alpha $ or $\beta $ or $\gamma $ according to the given statement. From equation $\left( \text{i} \right)$ we can write $\beta =2\alpha $, now substitute the value of $\beta $ in equation $\left( \text{ii} \right)$, then we will get
$\begin{align}
& \gamma =3\beta \\
& =3\left( 2\alpha \right) \\
& =6\alpha
\end{align}$
Now here we can write
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\alpha +2\alpha +6\alpha \\
& =9\alpha
\end{align}$
Equating the value of $\angle CAB+\angle ABC+\angle ACB$ to $180{}^\circ $, then we have
$\begin{align}
& 9\alpha =180{}^\circ \\
& \alpha =20{}^\circ
\end{align}$
Here from both methods we get the same answers. So, there is no restriction to convert all the angles into $\beta $.
$\angle CAB=\alpha $
$\angle ABC=\beta $
$\angle ACB=\gamma $
From the given data
$\begin{align}
& \angle ABC=\beta =\dfrac{2}{3}\left[ \angle CAB+\angle ABC \right] \\
& \beta =\dfrac{2}{3}\left[ \alpha +\beta \right] \\
& \beta -\dfrac{2}{3}\beta =\dfrac{2}{3}\alpha \\
& \dfrac{1}{3}\beta =\dfrac{2}{3}\alpha
\end{align}$
Multiplying the above equation with $3$, then
$\begin{align}
& \beta =2\alpha \\
& \alpha =\dfrac{1}{2}\beta .....\left( \text{i} \right)
\end{align}$
Now given that
$\begin{align}
& \angle ACB=3\angle ABC \\
& \gamma =3\beta ......\left( \text{ii} \right)
\end{align}$
Finding the sum of the angles in the triangle,
$\angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma $
From equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ substituting the values of $\alpha ,\gamma $ in the above equation, then
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\dfrac{1}{2}\beta +\beta +3\beta \\
& \angle CAB+\angle ABC+\angle ACB=\dfrac{9}{2}\beta .......\left( \text{iii} \right)
\end{align}$
But we know that the sum of angles in a triangle is equal to $180{}^\circ $, so
$\angle CAB+\angle ABC+\angle ACB=180{}^\circ $
From equation $\left( \text{iii} \right)$ substituting the value of $\angle CAB+\angle ABC+\angle ACB$ in the above equation, then
$\begin{align}
& \dfrac{9}{2}\beta =180{}^\circ \\
& 9\beta =360{}^\circ \\
& \beta =\dfrac{360{}^\circ }{9} \\
& =40{}^\circ
\end{align}$
From equation $\left( \text{i} \right)$ the value of $\alpha $ is
$\begin{align}
& \alpha =\dfrac{1}{2}\beta \\
& =\dfrac{1}{2}\left( 40{}^\circ \right) \\
& =20{}^\circ
\end{align}$
From equation $\left( \text{ii} \right)$ the value of $\gamma $ is
$\begin{align}
& \gamma =3\beta \\
& =3\left( 40{}^\circ \right) \\
& =120{}^\circ
\end{align}$
So, the angles of the triangle are
$\begin{align}
& \angle CAB=\angle A =\alpha \\
& \angle A=20{}^\circ
\end{align}$
$\begin{align}
& \angle ABC=\angle B =\beta \\
& \angle B=40{}^\circ
\end{align}$
$\begin{align}
& \angle ACB=\angle C=\gamma \\
& \angle C=120{}^\circ
\end{align}$
Note: We can convert all the variables to any one of the variables either $\alpha $ or $\beta $ or $\gamma $ according to the given statement. From equation $\left( \text{i} \right)$ we can write $\beta =2\alpha $, now substitute the value of $\beta $ in equation $\left( \text{ii} \right)$, then we will get
$\begin{align}
& \gamma =3\beta \\
& =3\left( 2\alpha \right) \\
& =6\alpha
\end{align}$
Now here we can write
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\alpha +2\alpha +6\alpha \\
& =9\alpha
\end{align}$
Equating the value of $\angle CAB+\angle ABC+\angle ACB$ to $180{}^\circ $, then we have
$\begin{align}
& 9\alpha =180{}^\circ \\
& \alpha =20{}^\circ
\end{align}$
Here from both methods we get the same answers. So, there is no restriction to convert all the angles into $\beta $.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

