
In $\Delta ABC$ if $\angle C=3\angle B$ and $\angle B=\dfrac{2}{3}\left[ \angle A+\angle B \right]$, find the values of $\angle A,\angle B,\angle C$ respectively.
Answer
581.7k+ views
Hint: We know that the sum of angles in a triangle is equal to $180{}^\circ $. From the given data we will convert the three angles into one variable and find the sum of the angles in the triangle and equate them to $180{}^\circ $ . Then we will get the value of that variable and using that value we will find the angles of the triangle.
Complete step-by-step answer:
Given that, In $\Delta ABC$ ,$\angle C=3\angle B$ and $\angle B=\dfrac{2}{3}\left[ \angle A+\angle B \right]$
The $\Delta ABC$ is represented in below picture
Complete step-by-step answer:
Given that, In $\Delta ABC$ ,$\angle C=3\angle B$ and $\angle B=\dfrac{2}{3}\left[ \angle A+\angle B \right]$
The $\Delta ABC$ is represented in below picture
Let the angles in the above triangle are
$\angle CAB=\alpha $
$\angle ABC=\beta $
$\angle ACB=\gamma $
From the given data
$\begin{align}
& \angle ABC=\beta =\dfrac{2}{3}\left[ \angle CAB+\angle ABC \right] \\
& \beta =\dfrac{2}{3}\left[ \alpha +\beta \right] \\
& \beta -\dfrac{2}{3}\beta =\dfrac{2}{3}\alpha \\
& \dfrac{1}{3}\beta =\dfrac{2}{3}\alpha
\end{align}$
Multiplying the above equation with $3$, then
$\begin{align}
& \beta =2\alpha \\
& \alpha =\dfrac{1}{2}\beta .....\left( \text{i} \right)
\end{align}$
Now given that
$\begin{align}
& \angle ACB=3\angle ABC \\
& \gamma =3\beta ......\left( \text{ii} \right)
\end{align}$
Finding the sum of the angles in the triangle,
$\angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma $
From equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ substituting the values of $\alpha ,\gamma $ in the above equation, then
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\dfrac{1}{2}\beta +\beta +3\beta \\
& \angle CAB+\angle ABC+\angle ACB=\dfrac{9}{2}\beta .......\left( \text{iii} \right)
\end{align}$
But we know that the sum of angles in a triangle is equal to $180{}^\circ $, so
$\angle CAB+\angle ABC+\angle ACB=180{}^\circ $
From equation $\left( \text{iii} \right)$ substituting the value of $\angle CAB+\angle ABC+\angle ACB$ in the above equation, then
$\begin{align}
& \dfrac{9}{2}\beta =180{}^\circ \\
& 9\beta =360{}^\circ \\
& \beta =\dfrac{360{}^\circ }{9} \\
& =40{}^\circ
\end{align}$
From equation $\left( \text{i} \right)$ the value of $\alpha $ is
$\begin{align}
& \alpha =\dfrac{1}{2}\beta \\
& =\dfrac{1}{2}\left( 40{}^\circ \right) \\
& =20{}^\circ
\end{align}$
From equation $\left( \text{ii} \right)$ the value of $\gamma $ is
$\begin{align}
& \gamma =3\beta \\
& =3\left( 40{}^\circ \right) \\
& =120{}^\circ
\end{align}$
So, the angles of the triangle are
$\begin{align}
& \angle CAB=\angle A =\alpha \\
& \angle A=20{}^\circ
\end{align}$
$\begin{align}
& \angle ABC=\angle B =\beta \\
& \angle B=40{}^\circ
\end{align}$
$\begin{align}
& \angle ACB=\angle C=\gamma \\
& \angle C=120{}^\circ
\end{align}$
Note: We can convert all the variables to any one of the variables either $\alpha $ or $\beta $ or $\gamma $ according to the given statement. From equation $\left( \text{i} \right)$ we can write $\beta =2\alpha $, now substitute the value of $\beta $ in equation $\left( \text{ii} \right)$, then we will get
$\begin{align}
& \gamma =3\beta \\
& =3\left( 2\alpha \right) \\
& =6\alpha
\end{align}$
Now here we can write
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\alpha +2\alpha +6\alpha \\
& =9\alpha
\end{align}$
Equating the value of $\angle CAB+\angle ABC+\angle ACB$ to $180{}^\circ $, then we have
$\begin{align}
& 9\alpha =180{}^\circ \\
& \alpha =20{}^\circ
\end{align}$
Here from both methods we get the same answers. So, there is no restriction to convert all the angles into $\beta $.
$\angle CAB=\alpha $
$\angle ABC=\beta $
$\angle ACB=\gamma $
From the given data
$\begin{align}
& \angle ABC=\beta =\dfrac{2}{3}\left[ \angle CAB+\angle ABC \right] \\
& \beta =\dfrac{2}{3}\left[ \alpha +\beta \right] \\
& \beta -\dfrac{2}{3}\beta =\dfrac{2}{3}\alpha \\
& \dfrac{1}{3}\beta =\dfrac{2}{3}\alpha
\end{align}$
Multiplying the above equation with $3$, then
$\begin{align}
& \beta =2\alpha \\
& \alpha =\dfrac{1}{2}\beta .....\left( \text{i} \right)
\end{align}$
Now given that
$\begin{align}
& \angle ACB=3\angle ABC \\
& \gamma =3\beta ......\left( \text{ii} \right)
\end{align}$
Finding the sum of the angles in the triangle,
$\angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma $
From equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ substituting the values of $\alpha ,\gamma $ in the above equation, then
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\dfrac{1}{2}\beta +\beta +3\beta \\
& \angle CAB+\angle ABC+\angle ACB=\dfrac{9}{2}\beta .......\left( \text{iii} \right)
\end{align}$
But we know that the sum of angles in a triangle is equal to $180{}^\circ $, so
$\angle CAB+\angle ABC+\angle ACB=180{}^\circ $
From equation $\left( \text{iii} \right)$ substituting the value of $\angle CAB+\angle ABC+\angle ACB$ in the above equation, then
$\begin{align}
& \dfrac{9}{2}\beta =180{}^\circ \\
& 9\beta =360{}^\circ \\
& \beta =\dfrac{360{}^\circ }{9} \\
& =40{}^\circ
\end{align}$
From equation $\left( \text{i} \right)$ the value of $\alpha $ is
$\begin{align}
& \alpha =\dfrac{1}{2}\beta \\
& =\dfrac{1}{2}\left( 40{}^\circ \right) \\
& =20{}^\circ
\end{align}$
From equation $\left( \text{ii} \right)$ the value of $\gamma $ is
$\begin{align}
& \gamma =3\beta \\
& =3\left( 40{}^\circ \right) \\
& =120{}^\circ
\end{align}$
So, the angles of the triangle are
$\begin{align}
& \angle CAB=\angle A =\alpha \\
& \angle A=20{}^\circ
\end{align}$
$\begin{align}
& \angle ABC=\angle B =\beta \\
& \angle B=40{}^\circ
\end{align}$
$\begin{align}
& \angle ACB=\angle C=\gamma \\
& \angle C=120{}^\circ
\end{align}$
Note: We can convert all the variables to any one of the variables either $\alpha $ or $\beta $ or $\gamma $ according to the given statement. From equation $\left( \text{i} \right)$ we can write $\beta =2\alpha $, now substitute the value of $\beta $ in equation $\left( \text{ii} \right)$, then we will get
$\begin{align}
& \gamma =3\beta \\
& =3\left( 2\alpha \right) \\
& =6\alpha
\end{align}$
Now here we can write
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=\alpha +\beta +\gamma \\
& =\alpha +2\alpha +6\alpha \\
& =9\alpha
\end{align}$
Equating the value of $\angle CAB+\angle ABC+\angle ACB$ to $180{}^\circ $, then we have
$\begin{align}
& 9\alpha =180{}^\circ \\
& \alpha =20{}^\circ
\end{align}$
Here from both methods we get the same answers. So, there is no restriction to convert all the angles into $\beta $.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

