
In any $\Delta ABC$, prove that $a\sin A-b\sin B=c\sin \left( A-B \right)$.
Answer
593.7k+ views
Hint: We will be using the solution of triangles to solve the problem. We will be using properties of a triangle to solve the problem. We will use the sine rule to find the value of side a and b of the triangle with the help of sine rule and use it to simplify the left hand side of the equation then simplify it using,
$\begin{align}
& {{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right) \\
& \sin \left( \pi -C \right)=\sin C \\
\end{align}$
to prove that the left hand side of the equation is equal to the right hand side.
Complete Step-by-Step solution:
We have been given a $\Delta ABC$ and we have to prove that, $a\sin A-b\sin B=c\sin \left( A-B \right)$.
So, we will first draw a $\Delta ABC$ and label its sides as a, b, c.
Now, we know that according to sine rule sides of any triangle are proportional to the sine of the angle opposite to them. So, we have,
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k..........\left( 1 \right)$
Now, we have from equation (1)
$\begin{align}
& a=\dfrac{\sin A}{k}..........\left( 2 \right) \\
& b=\dfrac{\sin B}{k}..........\left( 3 \right) \\
& c=\dfrac{\sin C}{k}..........\left( 4 \right) \\
\end{align}$
Now, we will take L.H.S of the question and prove it to be equal to the R.H.S.
In L.H.S we have,
$a\sin A-b\sin B$
Now, we will substitute the value of a and b from (2) and (3),
$a\sin A-b\sin B=\dfrac{{{\sin }^{2}}A}{k}-\dfrac{{{\sin }^{2}}B}{k}=\dfrac{1}{k}\left( {{\sin }^{2}}A-{{\sin }^{2}}B \right)$
Now, we know that, ${{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right)$ using this we have,
$a\sin A-b\sin B=\dfrac{1}{k}\left( \sin \left( A-B \right) \right)\left( \sin \left( A+B \right) \right)$
Now, we know that in a $\Delta ABC$ sum of interior angles is $180{}^\circ $. Therefore,
$\begin{align}
& A+B+C=180{}^\circ \\
& A+B=180{}^\circ -C \\
\end{align}$
Substituting values of A +B in $\dfrac{1}{k}\left( \sin \left( A-B \right) \right)\left( \sin \left( A+B \right) \right)$, we have,
$=\dfrac{1}{k}\left( \sin \left( A-B \right) \right)\left( \sin \left( 180{}^\circ -C \right) \right)$
Now, we know that $\sin \left( 180{}^\circ -C \right)=\sin C$. Therefore, we have,
$\begin{align}
& =\dfrac{1}{k}\sin \left( A-B \right)\sin C \\
& =\left( \dfrac{\sin C}{k} \right)\sin \left( A-B \right) \\
\end{align}$
Now, from equation (4) we will substitute value of $\dfrac{\sin C}{k}$, therefore,
$a\sin A-b\sin B=c\sin \left( A-B \right)$
Hence proved, since L.H.S = R.H.S.
Note: To solve these type of questions it is important to note that we have used sine rule to relate the sides of the triangle with the angle of the triangle also one must remember formulae like,
$\begin{align}
& {{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right) \\
& \sin \left( \pi -C \right)=\sin C \\
\end{align}$
to further simplify the problem.
$\begin{align}
& {{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right) \\
& \sin \left( \pi -C \right)=\sin C \\
\end{align}$
to prove that the left hand side of the equation is equal to the right hand side.
Complete Step-by-Step solution:
We have been given a $\Delta ABC$ and we have to prove that, $a\sin A-b\sin B=c\sin \left( A-B \right)$.
So, we will first draw a $\Delta ABC$ and label its sides as a, b, c.
Now, we know that according to sine rule sides of any triangle are proportional to the sine of the angle opposite to them. So, we have,
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k..........\left( 1 \right)$
Now, we have from equation (1)
$\begin{align}
& a=\dfrac{\sin A}{k}..........\left( 2 \right) \\
& b=\dfrac{\sin B}{k}..........\left( 3 \right) \\
& c=\dfrac{\sin C}{k}..........\left( 4 \right) \\
\end{align}$
Now, we will take L.H.S of the question and prove it to be equal to the R.H.S.
In L.H.S we have,
$a\sin A-b\sin B$
Now, we will substitute the value of a and b from (2) and (3),
$a\sin A-b\sin B=\dfrac{{{\sin }^{2}}A}{k}-\dfrac{{{\sin }^{2}}B}{k}=\dfrac{1}{k}\left( {{\sin }^{2}}A-{{\sin }^{2}}B \right)$
Now, we know that, ${{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right)$ using this we have,
$a\sin A-b\sin B=\dfrac{1}{k}\left( \sin \left( A-B \right) \right)\left( \sin \left( A+B \right) \right)$
Now, we know that in a $\Delta ABC$ sum of interior angles is $180{}^\circ $. Therefore,
$\begin{align}
& A+B+C=180{}^\circ \\
& A+B=180{}^\circ -C \\
\end{align}$
Substituting values of A +B in $\dfrac{1}{k}\left( \sin \left( A-B \right) \right)\left( \sin \left( A+B \right) \right)$, we have,
$=\dfrac{1}{k}\left( \sin \left( A-B \right) \right)\left( \sin \left( 180{}^\circ -C \right) \right)$
Now, we know that $\sin \left( 180{}^\circ -C \right)=\sin C$. Therefore, we have,
$\begin{align}
& =\dfrac{1}{k}\sin \left( A-B \right)\sin C \\
& =\left( \dfrac{\sin C}{k} \right)\sin \left( A-B \right) \\
\end{align}$
Now, from equation (4) we will substitute value of $\dfrac{\sin C}{k}$, therefore,
$a\sin A-b\sin B=c\sin \left( A-B \right)$
Hence proved, since L.H.S = R.H.S.
Note: To solve these type of questions it is important to note that we have used sine rule to relate the sides of the triangle with the angle of the triangle also one must remember formulae like,
$\begin{align}
& {{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A-B \right)\sin \left( A+B \right) \\
& \sin \left( \pi -C \right)=\sin C \\
\end{align}$
to further simplify the problem.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

