
In any $\Delta ABC$ , prove that
$a\cos A+b\cos B+c\cos C=2a\sin B\sin C$
Answer
603k+ views
Hint: Try to simplify the left-hand side of the equation given in the question by the application of the sine rule of a triangle followed by the use of the formula of sin2A and the formula of (sinX+sinY).
Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.
Now starting with the left-hand side of the equation that is given in the question.
We know, according to the sine rule of the triangle: $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k$ and in other terms, it can be written as:
$\begin{align}
& a=k\sin A \\
& b=k\sin B \\
& c=k\sin C \\
\end{align}$
So, applying this to our expression, we get
$a\cos A+b\cos B+c\cos C$
$=k\sin A\cos A+k\sin B\cos B+k\sin C\cos C$
Now we will divide and multiply each term by 2. On doing so, we get
$=\dfrac{k}{2}\times 2\times \sin A\cos A+\dfrac{k}{2}\times 2\times \sin B\cos B+\dfrac{k}{2}\times 2\times \sin C\cos C$
Now, when we use the formula $\sin 2X=2\operatorname{sinX}\operatorname{cosX}$ , we get
$=\dfrac{k}{2}\left( 2\sin A\cos A+2\sin B\cos B+2\sin C\cos C \right)$
$=\dfrac{k}{2}\left( \sin 2A+\sin 2B+\sin 2C \right)$
According to the formula: $2\sin \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)=\sin \left( X \right)+sin\left( Y \right)$ , we get
\[=\dfrac{k}{2}\left( 2\sin \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+2\sin C\cos C \right)\]
\[=\dfrac{k}{{}}\left( \sin \left( A+B \right)\cos \left( A-B \right)+\sin C\cos C \right)\]
Now as ABC is a triangle, we can say:
$\angle A+\angle B+\angle C=180{}^\circ $
$\Rightarrow \angle A+\angle B=180{}^\circ -\angle C$
So, substituting the value of A+B in our expression. On doing so, we get
\[=k\left( \sin \left( 180{}^\circ -C \right)\cos \left( A-B \right)+\sin C\cos C \right)\]
We know $\sin \left( 180{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
\[=k\left( sinC\cos \left( A-B \right)+\sin C\cos C \right)\]
\[=k\sin C\left( \cos \left( A-B \right)+\cos C \right)\]
Now we know $\operatorname{cosX}+cosY=2cos\left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)$ . So, our expression becomes:
\[=k\sin C\left( 2\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \right)\]
\[=k\sin C\left( 2\cos \left( \dfrac{180{}^\circ -2B}{2} \right)\cos \left( \dfrac{180{}^\circ -2A}{2} \right) \right)\]
\[=k\sin C\left( 2\cos \left( 90{}^\circ -B \right)\cos \left( 90{}^\circ -A \right) \right)\]
We know $\sin \left( 90{}^\circ -X \right)=\cos X\text{ and cos}\left( 90{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
\[=2k\sin C\sin A\sin B\]
Now according to the sine rule as mentioned above, a=ksinA.
\[=2a\sin C\sin B\]
The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.
Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta }$ , where $\Delta $ represents the area of the triangle.
Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.
Now starting with the left-hand side of the equation that is given in the question.
We know, according to the sine rule of the triangle: $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k$ and in other terms, it can be written as:
$\begin{align}
& a=k\sin A \\
& b=k\sin B \\
& c=k\sin C \\
\end{align}$
So, applying this to our expression, we get
$a\cos A+b\cos B+c\cos C$
$=k\sin A\cos A+k\sin B\cos B+k\sin C\cos C$
Now we will divide and multiply each term by 2. On doing so, we get
$=\dfrac{k}{2}\times 2\times \sin A\cos A+\dfrac{k}{2}\times 2\times \sin B\cos B+\dfrac{k}{2}\times 2\times \sin C\cos C$
Now, when we use the formula $\sin 2X=2\operatorname{sinX}\operatorname{cosX}$ , we get
$=\dfrac{k}{2}\left( 2\sin A\cos A+2\sin B\cos B+2\sin C\cos C \right)$
$=\dfrac{k}{2}\left( \sin 2A+\sin 2B+\sin 2C \right)$
According to the formula: $2\sin \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)=\sin \left( X \right)+sin\left( Y \right)$ , we get
\[=\dfrac{k}{2}\left( 2\sin \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+2\sin C\cos C \right)\]
\[=\dfrac{k}{{}}\left( \sin \left( A+B \right)\cos \left( A-B \right)+\sin C\cos C \right)\]
Now as ABC is a triangle, we can say:
$\angle A+\angle B+\angle C=180{}^\circ $
$\Rightarrow \angle A+\angle B=180{}^\circ -\angle C$
So, substituting the value of A+B in our expression. On doing so, we get
\[=k\left( \sin \left( 180{}^\circ -C \right)\cos \left( A-B \right)+\sin C\cos C \right)\]
We know $\sin \left( 180{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
\[=k\left( sinC\cos \left( A-B \right)+\sin C\cos C \right)\]
\[=k\sin C\left( \cos \left( A-B \right)+\cos C \right)\]
Now we know $\operatorname{cosX}+cosY=2cos\left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)$ . So, our expression becomes:
\[=k\sin C\left( 2\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \right)\]
\[=k\sin C\left( 2\cos \left( \dfrac{180{}^\circ -2B}{2} \right)\cos \left( \dfrac{180{}^\circ -2A}{2} \right) \right)\]
\[=k\sin C\left( 2\cos \left( 90{}^\circ -B \right)\cos \left( 90{}^\circ -A \right) \right)\]
We know $\sin \left( 90{}^\circ -X \right)=\cos X\text{ and cos}\left( 90{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
\[=2k\sin C\sin A\sin B\]
Now according to the sine rule as mentioned above, a=ksinA.
\[=2a\sin C\sin B\]
The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.
Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta }$ , where $\Delta $ represents the area of the triangle.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

