
In any \[\Delta ABC\], prove that
\[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)=0\]
Answer
611.7k+ views
Hint: In the above question, we will put the values of \[{{\cos }^{2}}B\], \[{{\cos }^{2}}C\]and \[{{\cos }^{2}}A\] in terms of \[{{\sin }^{2}}B\], \[{{\sin }^{2}}C\] and \[{{\sin }^{2}}A\] respectively and then we will use the sine rule of the triangle. The trigonometric identities that we will use in the above question are as follows:
\[{{\cos }^{2}}A=1-{{\sin }^{2}}A\]
\[{{\cos }^{2}}B=1-{{\sin }^{2}}B\]
\[{{\cos }^{2}}C=1-{{\sin }^{2}}C\]
Complete step by step answer:
We have been given to prove \[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)=0\]
We know that the sine rule of the triangle is as follows:
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
Let the ratio is equal to ‘k’, we get,
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k\]
\[\Rightarrow \sin A=ak,\text{ }\sin B=bk\text{ and }\sin C=ck\]
Taking the left-hand side of the given expression which we have to prove is as follows:
\[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)\]
Substituting the values of \[{{\cos }^{2}}B\], \[{{\cos }^{2}}C\]and \[{{\cos }^{2}}A\] in terms of \[{{\sin }^{2}}B\], \[{{\sin }^{2}}C\] and \[{{\sin }^{2}}A\] respectively we get the expression as follows:
\[={{a}^{2}}\left( 1-{{\sin }^{2}}B-1+{{\sin }^{2}}C \right)+{{b}^{2}}\left( 1-{{\sin }^{2}}C-1+{{\sin }^{2}}A \right)+{{c}^{2}}\left( 1-{{\sin }^{2}}A-1+{{\sin }^{2}}B \right)\]
Simplifying the above expression, we get,
\[={{a}^{2}}\left( {{\sin }^{2}}C-{{\sin }^{2}}B \right)+{{b}^{2}}\left( {{\sin }^{2}}A-{{\sin }^{2}}C \right)+{{c}^{2}}\left( {{\sin }^{2}}B-{{\sin }^{2}}A \right)\]
On substituting the values of sin A, sin B, and sin C from the sine rule of the triangle, we get the expression as follows:
\[={{a}^{2}}\left( {{c}^{2}}{{k}^{2}}-{{b}^{2}}{{k}^{2}} \right)+{{b}^{2}}\left( {{a}^{2}}{{k}^{2}}-{{k}^{2}}{{c}^{2}} \right)+{{c}^{2}}\left( {{k}^{2}}{{b}^{2}}-{{k}^{2}}{{a}^{2}} \right)\]
Taking \[{{k}^{2}}\] as common from the given expression and expanding the bracket, we get,
\[={{k}^{2}}\left[ {{a}^{2}}{{c}^{2}}-{{a}^{2}}{{b}^{2}}+{{b}^{2}}{{a}^{2}}-{{b}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}-{{a}^{2}}{{c}^{2}} \right]\]
On simplifying the above expression, we get,
\[={{k}^{2}}\times 0\]
= 0
Hence, it is proved that
\[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)=0\]
Note: Just remember the sine rule, cosine rule, and other trigonometric identities as it will help you a lot in these types of questions. Also, we can prove the given expression by using the cosine rule.
\[{{\cos }^{2}}A=1-{{\sin }^{2}}A\]
\[{{\cos }^{2}}B=1-{{\sin }^{2}}B\]
\[{{\cos }^{2}}C=1-{{\sin }^{2}}C\]
Complete step by step answer:
We have been given to prove \[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)=0\]
We know that the sine rule of the triangle is as follows:
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
Let the ratio is equal to ‘k’, we get,
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k\]
\[\Rightarrow \sin A=ak,\text{ }\sin B=bk\text{ and }\sin C=ck\]
Taking the left-hand side of the given expression which we have to prove is as follows:
\[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)\]
Substituting the values of \[{{\cos }^{2}}B\], \[{{\cos }^{2}}C\]and \[{{\cos }^{2}}A\] in terms of \[{{\sin }^{2}}B\], \[{{\sin }^{2}}C\] and \[{{\sin }^{2}}A\] respectively we get the expression as follows:
\[={{a}^{2}}\left( 1-{{\sin }^{2}}B-1+{{\sin }^{2}}C \right)+{{b}^{2}}\left( 1-{{\sin }^{2}}C-1+{{\sin }^{2}}A \right)+{{c}^{2}}\left( 1-{{\sin }^{2}}A-1+{{\sin }^{2}}B \right)\]
Simplifying the above expression, we get,
\[={{a}^{2}}\left( {{\sin }^{2}}C-{{\sin }^{2}}B \right)+{{b}^{2}}\left( {{\sin }^{2}}A-{{\sin }^{2}}C \right)+{{c}^{2}}\left( {{\sin }^{2}}B-{{\sin }^{2}}A \right)\]
On substituting the values of sin A, sin B, and sin C from the sine rule of the triangle, we get the expression as follows:
\[={{a}^{2}}\left( {{c}^{2}}{{k}^{2}}-{{b}^{2}}{{k}^{2}} \right)+{{b}^{2}}\left( {{a}^{2}}{{k}^{2}}-{{k}^{2}}{{c}^{2}} \right)+{{c}^{2}}\left( {{k}^{2}}{{b}^{2}}-{{k}^{2}}{{a}^{2}} \right)\]
Taking \[{{k}^{2}}\] as common from the given expression and expanding the bracket, we get,
\[={{k}^{2}}\left[ {{a}^{2}}{{c}^{2}}-{{a}^{2}}{{b}^{2}}+{{b}^{2}}{{a}^{2}}-{{b}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}-{{a}^{2}}{{c}^{2}} \right]\]
On simplifying the above expression, we get,
\[={{k}^{2}}\times 0\]
= 0
Hence, it is proved that
\[{{a}^{2}}\left( {{\cos }^{2}}B-{{\cos }^{2}}C \right)+{{b}^{2}}\left( {{\cos }^{2}}C-{{\cos }^{2}}A \right)+{{c}^{2}}\left( {{\cos }^{2}}A-{{\cos }^{2}}B \right)=0\]
Note: Just remember the sine rule, cosine rule, and other trigonometric identities as it will help you a lot in these types of questions. Also, we can prove the given expression by using the cosine rule.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

