
In any $\Delta ABC$, prove that $4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)={{\left( a+b+c \right)}^{2}}$.
Answer
606.9k+ views
Hint: We will be using the concept of trigonometry and solution of triangles to solve the problem. We will be using cosine rules to relate the side of the triangles with the cosine of the angle of the triangle then we will use these values in the left hand side of the equation to prove it to be equal to the right hand side of the equation.
Complete Step-by-Step solution:
We have been given a$\Delta ABC$ and we have to prove that,$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)={{\left( a+b+c \right)}^{2}}$.
Now, we will draw a $\Delta ABC$ and label its sides as a, b, c.
We will now take L.H.S of the question and prove it to be equal to the R.H.S. In L.H.S we have,
$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)$
Now, we know the trigonometry formula that,
$\cos 2A=2{{\cos }^{2}}A-1$
So, we have,
\[\begin{align}
& {{\cos }^{2}}\left( \dfrac{A}{2} \right)=\dfrac{1+\cos A}{2}..........\left( 1 \right) \\
& {{\cos }^{2}}\left( \dfrac{B}{2} \right)=\dfrac{1+\cos B}{2}..........\left( 2 \right) \\
& {{\cos }^{2}}\left( \dfrac{C}{2} \right)=\dfrac{1+\cos C}{2}..........\left( 3 \right) \\
\end{align}\]
Now, we will substitute the value of \[{{\cos }^{2}}\left( \dfrac{A}{2} \right),{{\cos }^{2}}\left( \dfrac{B}{2} \right)\ and\ {{\cos }^{2}}\left( \dfrac{C}{2} \right)\] from (1), (2) and (3) we have,
$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)=4\left( bc\dfrac{\left( 1+\cos A \right)}{2}+ca\dfrac{\left( 1+\cos B \right)}{2}+ab\dfrac{\left( 1+\cos C \right)}{2} \right)$
Now, we will take 2 as L.C.M and expand the numerator,
$\begin{align}
& 4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)=\dfrac{4}{2}\left( bc+bc\cos A+ca+ca\cos B+ab+ab\cos c \right) \\
& =2\left( ab+bc+ca+bc\cos A+ca\cos B+ab\cos c \right) \\
\end{align}$
Now, we know that according to cosine rule,
$\begin{align}
& \cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}............\left( 4 \right) \\
& \cos B=\dfrac{{{c}^{2}}+{{a}^{2}}-{{b}^{2}}}{2ac}............\left( 5 \right) \\
& \cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}............\left( 6 \right) \\
\end{align}$
Now, we will substitute the value of \[\cos A,\cos B\ and\ \cos C\] from (1), (2) and (3) we have,
$\begin{align}
& =2\left( ab+bc+ca+bc\dfrac{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}{2bc}+ca\dfrac{\left( {{c}^{2}}+{{a}^{2}}-{{b}^{2}} \right)}{2ac}+ab\dfrac{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}{2ab} \right) \\
& =2\left( ab+bc+ca+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2}+\dfrac{{{c}^{2}}+{{a}^{2}}-{{b}^{2}}}{2}+\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2} \right) \\
& =2\left( ab+bc+ca+\dfrac{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}{2} \right) \\
\end{align}$
Now, we will expand it, we have,
$\begin{align}
& =2ab+2bc+2ca+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \\
\end{align}$
Now, we know that,
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$
Therefore, we have,
$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)={{\left( a+b+c \right)}^{2}}$
Since, L.H.S = R.H.S, Hence proved.
Note: To solve these types of questions it is important to remember that we have used the cosine rule to relate the side of the triangle with the cosine of the angle of the triangle. It is also advised that one must remember the cosine rule and trigonometric identities like $\cos 2A=2{{\cos }^{2}}A-1$.
Complete Step-by-Step solution:
We have been given a$\Delta ABC$ and we have to prove that,$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)={{\left( a+b+c \right)}^{2}}$.
Now, we will draw a $\Delta ABC$ and label its sides as a, b, c.
We will now take L.H.S of the question and prove it to be equal to the R.H.S. In L.H.S we have,
$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)$
Now, we know the trigonometry formula that,
$\cos 2A=2{{\cos }^{2}}A-1$
So, we have,
\[\begin{align}
& {{\cos }^{2}}\left( \dfrac{A}{2} \right)=\dfrac{1+\cos A}{2}..........\left( 1 \right) \\
& {{\cos }^{2}}\left( \dfrac{B}{2} \right)=\dfrac{1+\cos B}{2}..........\left( 2 \right) \\
& {{\cos }^{2}}\left( \dfrac{C}{2} \right)=\dfrac{1+\cos C}{2}..........\left( 3 \right) \\
\end{align}\]
Now, we will substitute the value of \[{{\cos }^{2}}\left( \dfrac{A}{2} \right),{{\cos }^{2}}\left( \dfrac{B}{2} \right)\ and\ {{\cos }^{2}}\left( \dfrac{C}{2} \right)\] from (1), (2) and (3) we have,
$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)=4\left( bc\dfrac{\left( 1+\cos A \right)}{2}+ca\dfrac{\left( 1+\cos B \right)}{2}+ab\dfrac{\left( 1+\cos C \right)}{2} \right)$
Now, we will take 2 as L.C.M and expand the numerator,
$\begin{align}
& 4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)=\dfrac{4}{2}\left( bc+bc\cos A+ca+ca\cos B+ab+ab\cos c \right) \\
& =2\left( ab+bc+ca+bc\cos A+ca\cos B+ab\cos c \right) \\
\end{align}$
Now, we know that according to cosine rule,
$\begin{align}
& \cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}............\left( 4 \right) \\
& \cos B=\dfrac{{{c}^{2}}+{{a}^{2}}-{{b}^{2}}}{2ac}............\left( 5 \right) \\
& \cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}............\left( 6 \right) \\
\end{align}$
Now, we will substitute the value of \[\cos A,\cos B\ and\ \cos C\] from (1), (2) and (3) we have,
$\begin{align}
& =2\left( ab+bc+ca+bc\dfrac{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}{2bc}+ca\dfrac{\left( {{c}^{2}}+{{a}^{2}}-{{b}^{2}} \right)}{2ac}+ab\dfrac{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}{2ab} \right) \\
& =2\left( ab+bc+ca+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2}+\dfrac{{{c}^{2}}+{{a}^{2}}-{{b}^{2}}}{2}+\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2} \right) \\
& =2\left( ab+bc+ca+\dfrac{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}{2} \right) \\
\end{align}$
Now, we will expand it, we have,
$\begin{align}
& =2ab+2bc+2ca+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \\
\end{align}$
Now, we know that,
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$
Therefore, we have,
$4\left( bc{{\cos }^{2}}\dfrac{A}{2}+ca{{\cos }^{2}}\dfrac{B}{2}+ab{{\cos }^{2}}\dfrac{C}{2} \right)={{\left( a+b+c \right)}^{2}}$
Since, L.H.S = R.H.S, Hence proved.
Note: To solve these types of questions it is important to remember that we have used the cosine rule to relate the side of the triangle with the cosine of the angle of the triangle. It is also advised that one must remember the cosine rule and trigonometric identities like $\cos 2A=2{{\cos }^{2}}A-1$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

