Answer

Verified

446.7k+ views

**Hint:**First, we will form the triangle according to given conditions, then draw an altitude in it to use pythagorean theorem such that it contains the sides BD and BC so that we can use the given condition \[BD = \dfrac{1}{3}BC\] and thus find the result.

**Complete step-by-step answer:**

Let us draw the figure first as shown below:

Here, ABC is the given triangle and \[BD = \dfrac{1}{3}BC\]. Let P be a point on BC such that AP is the altitude and we have drawn AD as well because we need the condition $9A{D^2} = 7A{B^2}$ which contains AD.

Consider the $\vartriangle APC$ and $\vartriangle APB$:

$AB = AC$ (Since the triangle is equilateral)

$AP = AP$ (Common)

$\angle B = \angle C$ (Both are ${60^ \circ }$ because of being angles in equilateral triangle)

Hence, $\vartriangle APC \cong \vartriangle APB$ (By SAS property)

SAS property states that two triangles are congruent if they have a pair of equal corresponding angles and two pairs of corresponding equal sides.

Hence, we have $BP = PC$ (By C.P.C.T) …..(1)

$BP + PC = BC = AB$

Using (1), we have:

$BP = PC = \dfrac{1}{2}BC = \dfrac{1}{2}AB$ ……(2)

CPCT stands for Corresponding parts of Congruent triangles. CPCT theorem states that if two or more triangles which are congruent to each other are taken then the corresponding angles and the sides of the triangles are also congruent to each other.

Let us now first get to know the pythagorean theorem:

It says that if we have a right angled triangle, right angled at B, then $A{C^2} = A{B^2} + B{C^2}$

Now consider the $\vartriangle ABP$:-

Applying pythagorean theorem on it, we get:

$A{B^2} = A{P^2} + P{B^2}$

This implies that $A{P^2} = A{B^2} - P{B^2}$

Using (2), we will get:-

$\therefore A{P^2} = A{B^2} - {\left( {\dfrac{1}{2}AB} \right)^2}$

$\therefore A{P^2} = A{B^2} - \dfrac{1}{4}A{B^2}$

$\therefore A{P^2} = \dfrac{{4A{B^2} - A{B^2}}}{4} = \dfrac{{3A{B^2}}}{4}$ …….(3)

Now, consider $\vartriangle ADP$:-

Applying pythagorean theorem on it, we get:

$A{D^2} = A{P^2} + P{D^2}$ ……(4)

Applying (3) in (4), we get:-

$A{D^2} = \dfrac{3}{4}A{B^2} + D{P^2}$ …..(5)

We clearly see that $BD + DP = BP$

So, we have: $DP = BP - BD$

Putting this in (5), we will get:-

$A{D^2} = \dfrac{3}{4}A{B^2} + {(BP - BD)^2}$ …….(6)

We are given that \[BD = \dfrac{1}{3}BC\] and since ABC is an equilateral triangle which means $AB = BC$.

This implies \[BD = \dfrac{1}{3}BC = \dfrac{1}{3}AB\] …….(7)

Using (1) and (7) in (6), we get:

$A{D^2} = \dfrac{3}{4}A{B^2} + {(\dfrac{1}{2}AB - \dfrac{1}{3}AB)^2}$

Simplifying RHS:

$A{D^2} = \dfrac{3}{4}A{B^2} + \dfrac{1}{{36}}A{B^2}$

Simplifying the RHS further:

$A{D^2} = \dfrac{3}{4}A{B^2} + \dfrac{1}{{36}}A{B^2} = \dfrac{{27 + 1}}{{36}}A{B^2} = \dfrac{{28}}{{36}}A{B^2}$

Cross multiplying:

$36A{D^2} = 28A{B^2}$

Cutting 4 from both sides:

$9A{D^2} = 7A{B^2}$

Hence, we have proved the required expression.

**Note:**The students may make the mistake of applying the pythagorean theorem on the triangles ABD and ACD but, you must always remember that, we need a right angled triangle to apply the pythagorean theorem.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The mountain range which stretches from Gujarat in class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths