In an AP, if the ${m^{th}}$ term is n and ${n^{th}}$ term is m, then find the pth term. ($m \ne n$).
Answer
Verified
478.2k+ views
Hint: Following the question we will get two equations. Subtracting them we will get the value of d and putting d value in one equation we will get the first term of the sequence. Substituting them in the general formula we will get the answer.
Complete step-by-step answer:
We know that in arithmetic progression, the general formula is,
${a_n} = a + (n - 1)d$
Where, ${a_n}$ = ${n^{th}}$ term of AP
a = first term of the AP
d = common difference in AP
Thus ${m^{th}}$ term, ${a_m} = a + (m - 1)d$
In the question it is given that ${m^{th}}$ term is n
i.e. $a + (m - 1)d = n$………………….(1)
And ${n^{th}}$ term, ${a_n} = a + (n - 1)d$
It is also given in the question that ${n^{th}}$ term is m
I.e. $a + (n - 1)d = m$………………..(2)
Subtracting equation (2) from equation (1) we find the common difference of the arithmetic series.
Hence, $[a + (m - 1)d] - [a + (n - 1)d] = n - m$
$ \Rightarrow a + (m - 1)d - a - (n - 1)d = n - m$
Cancelling a and –a in left hand side we get,
$(m - 1)d - (n - 1)d = n - m$
Taking d common in left hand side we get,
$(m - 1 - n + 1)d = n - m$
Cancelling -1 and +1 we get,
$(m - n)d = n - m$
$ \Rightarrow d = \dfrac{{n - m}}{{m - n}}$
Multiplying -1 on both side we get,
$d = - 1$
Putting value of d in equation (2) we get,
$a + (n - 1)d = m$
$ \Rightarrow a + (n - 1)\left( { - 1} \right) = m$
$ \Rightarrow a - n + 1 = m$
$ \Rightarrow a = m + n - 1$
We got the value of a and d.
For the ${p^{th}}$ term,
We will use the general formula of AP i.e.
${a_n} = a + (n - 1)d$
Putting n = p, a = m+n-1 and d = -1 in the above formula we get,
${a_p} = \left( {m + n - 1} \right) + \left( {p - 1} \right) - 1$
Expanding the right hand side of the equation we get,
${a_p} = m + n - 1 - p + 1$
Cancelling -1 and +1 in the right hand side we get,
${a_p} = m + n - p$
Thus the ${p^{th}}$ term is ${a_p} = m + n - p$.
Note: Arithmetic progression or arithmetic sequence is the sequence in which the difference between two consecutive numbers are equal.
You can also subtract equation 1 from equation 2 to get the d value.
Be cautious while doing the equations because the mistakes in minus and plus signs can even change the whole answer.
Complete step-by-step answer:
We know that in arithmetic progression, the general formula is,
${a_n} = a + (n - 1)d$
Where, ${a_n}$ = ${n^{th}}$ term of AP
a = first term of the AP
d = common difference in AP
Thus ${m^{th}}$ term, ${a_m} = a + (m - 1)d$
In the question it is given that ${m^{th}}$ term is n
i.e. $a + (m - 1)d = n$………………….(1)
And ${n^{th}}$ term, ${a_n} = a + (n - 1)d$
It is also given in the question that ${n^{th}}$ term is m
I.e. $a + (n - 1)d = m$………………..(2)
Subtracting equation (2) from equation (1) we find the common difference of the arithmetic series.
Hence, $[a + (m - 1)d] - [a + (n - 1)d] = n - m$
$ \Rightarrow a + (m - 1)d - a - (n - 1)d = n - m$
Cancelling a and –a in left hand side we get,
$(m - 1)d - (n - 1)d = n - m$
Taking d common in left hand side we get,
$(m - 1 - n + 1)d = n - m$
Cancelling -1 and +1 we get,
$(m - n)d = n - m$
$ \Rightarrow d = \dfrac{{n - m}}{{m - n}}$
Multiplying -1 on both side we get,
$d = - 1$
Putting value of d in equation (2) we get,
$a + (n - 1)d = m$
$ \Rightarrow a + (n - 1)\left( { - 1} \right) = m$
$ \Rightarrow a - n + 1 = m$
$ \Rightarrow a = m + n - 1$
We got the value of a and d.
For the ${p^{th}}$ term,
We will use the general formula of AP i.e.
${a_n} = a + (n - 1)d$
Putting n = p, a = m+n-1 and d = -1 in the above formula we get,
${a_p} = \left( {m + n - 1} \right) + \left( {p - 1} \right) - 1$
Expanding the right hand side of the equation we get,
${a_p} = m + n - 1 - p + 1$
Cancelling -1 and +1 in the right hand side we get,
${a_p} = m + n - p$
Thus the ${p^{th}}$ term is ${a_p} = m + n - p$.
Note: Arithmetic progression or arithmetic sequence is the sequence in which the difference between two consecutive numbers are equal.
You can also subtract equation 1 from equation 2 to get the d value.
Be cautious while doing the equations because the mistakes in minus and plus signs can even change the whole answer.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE