
In an AP, if the ${m^{th}}$ term is n and ${n^{th}}$ term is m, then find the pth term. ($m \ne n$).
Answer
592.5k+ views
Hint: Following the question we will get two equations. Subtracting them we will get the value of d and putting d value in one equation we will get the first term of the sequence. Substituting them in the general formula we will get the answer.
Complete step-by-step answer:
We know that in arithmetic progression, the general formula is,
${a_n} = a + (n - 1)d$
Where, ${a_n}$ = ${n^{th}}$ term of AP
a = first term of the AP
d = common difference in AP
Thus ${m^{th}}$ term, ${a_m} = a + (m - 1)d$
In the question it is given that ${m^{th}}$ term is n
i.e. $a + (m - 1)d = n$………………….(1)
And ${n^{th}}$ term, ${a_n} = a + (n - 1)d$
It is also given in the question that ${n^{th}}$ term is m
I.e. $a + (n - 1)d = m$………………..(2)
Subtracting equation (2) from equation (1) we find the common difference of the arithmetic series.
Hence, $[a + (m - 1)d] - [a + (n - 1)d] = n - m$
$ \Rightarrow a + (m - 1)d - a - (n - 1)d = n - m$
Cancelling a and –a in left hand side we get,
$(m - 1)d - (n - 1)d = n - m$
Taking d common in left hand side we get,
$(m - 1 - n + 1)d = n - m$
Cancelling -1 and +1 we get,
$(m - n)d = n - m$
$ \Rightarrow d = \dfrac{{n - m}}{{m - n}}$
Multiplying -1 on both side we get,
$d = - 1$
Putting value of d in equation (2) we get,
$a + (n - 1)d = m$
$ \Rightarrow a + (n - 1)\left( { - 1} \right) = m$
$ \Rightarrow a - n + 1 = m$
$ \Rightarrow a = m + n - 1$
We got the value of a and d.
For the ${p^{th}}$ term,
We will use the general formula of AP i.e.
${a_n} = a + (n - 1)d$
Putting n = p, a = m+n-1 and d = -1 in the above formula we get,
${a_p} = \left( {m + n - 1} \right) + \left( {p - 1} \right) - 1$
Expanding the right hand side of the equation we get,
${a_p} = m + n - 1 - p + 1$
Cancelling -1 and +1 in the right hand side we get,
${a_p} = m + n - p$
Thus the ${p^{th}}$ term is ${a_p} = m + n - p$.
Note: Arithmetic progression or arithmetic sequence is the sequence in which the difference between two consecutive numbers are equal.
You can also subtract equation 1 from equation 2 to get the d value.
Be cautious while doing the equations because the mistakes in minus and plus signs can even change the whole answer.
Complete step-by-step answer:
We know that in arithmetic progression, the general formula is,
${a_n} = a + (n - 1)d$
Where, ${a_n}$ = ${n^{th}}$ term of AP
a = first term of the AP
d = common difference in AP
Thus ${m^{th}}$ term, ${a_m} = a + (m - 1)d$
In the question it is given that ${m^{th}}$ term is n
i.e. $a + (m - 1)d = n$………………….(1)
And ${n^{th}}$ term, ${a_n} = a + (n - 1)d$
It is also given in the question that ${n^{th}}$ term is m
I.e. $a + (n - 1)d = m$………………..(2)
Subtracting equation (2) from equation (1) we find the common difference of the arithmetic series.
Hence, $[a + (m - 1)d] - [a + (n - 1)d] = n - m$
$ \Rightarrow a + (m - 1)d - a - (n - 1)d = n - m$
Cancelling a and –a in left hand side we get,
$(m - 1)d - (n - 1)d = n - m$
Taking d common in left hand side we get,
$(m - 1 - n + 1)d = n - m$
Cancelling -1 and +1 we get,
$(m - n)d = n - m$
$ \Rightarrow d = \dfrac{{n - m}}{{m - n}}$
Multiplying -1 on both side we get,
$d = - 1$
Putting value of d in equation (2) we get,
$a + (n - 1)d = m$
$ \Rightarrow a + (n - 1)\left( { - 1} \right) = m$
$ \Rightarrow a - n + 1 = m$
$ \Rightarrow a = m + n - 1$
We got the value of a and d.
For the ${p^{th}}$ term,
We will use the general formula of AP i.e.
${a_n} = a + (n - 1)d$
Putting n = p, a = m+n-1 and d = -1 in the above formula we get,
${a_p} = \left( {m + n - 1} \right) + \left( {p - 1} \right) - 1$
Expanding the right hand side of the equation we get,
${a_p} = m + n - 1 - p + 1$
Cancelling -1 and +1 in the right hand side we get,
${a_p} = m + n - p$
Thus the ${p^{th}}$ term is ${a_p} = m + n - p$.
Note: Arithmetic progression or arithmetic sequence is the sequence in which the difference between two consecutive numbers are equal.
You can also subtract equation 1 from equation 2 to get the d value.
Be cautious while doing the equations because the mistakes in minus and plus signs can even change the whole answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

