Answer
Verified
490.5k+ views
Hint:In order to solve to this problem, use general ${{\text{n}}^{{\text{th}}}}$term of different arithmetic progressions(Aps) which is ${{\text{a}}_{\text{n}}}$= a + (n−1)d so that we can find first and last term of AP which is required to get ${{\text{p}}^{{\text{th}}}}$ term.
Complete step-by-step answer:
We have the ${{\text{n}}^{{\text{th}}}}$term of an AP,
For
${{\text{a}}_{\text{n}}}$=a+(n−1) d
Where, a is the${{\text{n}}^{{\text{th}}}}$ term first term and d is the common difference
As we find ${{\text{n}}^{{\text{th}}}}$ term similarly we can find ${{\text{m}}^{{\text{th}}}}$ term
For ${{\text{m}}^{{\text{th}}}}$ term,
${{\text{a}}_{\text{m}}}$=a + (m−1) d
Where, a is the first term and d is the common difference
In the question it is given that ${{\text{m}}^{{\text{th}}}}$term ${{\text{a}}_{\text{m}}}$is equal to n
${{\text{a}}_{\text{m}}}$=a + (m−1)d = n ................(1)
In the question it is given that ${{\text{n}}^{{\text{th}}}}$term ${{\text{a}}_{\text{n}}}$is equal to m
an=a + (n−1)d = m ..............(2)
on subtracting equation (2) from equation (1),
a+(m−1)d−(a+(n−1)d ) = n−m
(m−1)d−(n-1) d = n−m
On further solving
(m−1−n+1) d = n−m
(m−n)d = n−m
$ \Rightarrow {\text{d = }}\dfrac{{{\text{n - m}}}}{{{\text{m - n}}}}$
$ \Rightarrow {\text{d = - 1}}$ ; here we get common difference of AP
Substitute d = -1 in equation (1),
a+(m−1) (−1) = n
a−m+1=n
a = n+m−1; Here we get first term of AP
For ${{\text{p}}^{{\text{th}}}}$ term
${{\text{a}}_{\text{p}}}$=a+(p−1)d
On putting a= n+m−1 & d = -1 in above equation
= n+m−1+(p−1) (−1)
=n+m−1−p+1
= n+m−p ; Which is required ${{\text{p}}^{{\text{th}}}}$term
Hence Option C is correct.
Note: Whenever we face such type of problems we must choose expressions of nth term along with the proper understanding of common difference and first term of different APs, because by applying further proper mathematics like Addition or subtraction on general nth term we can get our desired result.
Complete step-by-step answer:
We have the ${{\text{n}}^{{\text{th}}}}$term of an AP,
For
${{\text{a}}_{\text{n}}}$=a+(n−1) d
Where, a is the${{\text{n}}^{{\text{th}}}}$ term first term and d is the common difference
As we find ${{\text{n}}^{{\text{th}}}}$ term similarly we can find ${{\text{m}}^{{\text{th}}}}$ term
For ${{\text{m}}^{{\text{th}}}}$ term,
${{\text{a}}_{\text{m}}}$=a + (m−1) d
Where, a is the first term and d is the common difference
In the question it is given that ${{\text{m}}^{{\text{th}}}}$term ${{\text{a}}_{\text{m}}}$is equal to n
${{\text{a}}_{\text{m}}}$=a + (m−1)d = n ................(1)
In the question it is given that ${{\text{n}}^{{\text{th}}}}$term ${{\text{a}}_{\text{n}}}$is equal to m
an=a + (n−1)d = m ..............(2)
on subtracting equation (2) from equation (1),
a+(m−1)d−(a+(n−1)d ) = n−m
(m−1)d−(n-1) d = n−m
On further solving
(m−1−n+1) d = n−m
(m−n)d = n−m
$ \Rightarrow {\text{d = }}\dfrac{{{\text{n - m}}}}{{{\text{m - n}}}}$
$ \Rightarrow {\text{d = - 1}}$ ; here we get common difference of AP
Substitute d = -1 in equation (1),
a+(m−1) (−1) = n
a−m+1=n
a = n+m−1; Here we get first term of AP
For ${{\text{p}}^{{\text{th}}}}$ term
${{\text{a}}_{\text{p}}}$=a+(p−1)d
On putting a= n+m−1 & d = -1 in above equation
= n+m−1+(p−1) (−1)
=n+m−1−p+1
= n+m−p ; Which is required ${{\text{p}}^{{\text{th}}}}$term
Hence Option C is correct.
Note: Whenever we face such type of problems we must choose expressions of nth term along with the proper understanding of common difference and first term of different APs, because by applying further proper mathematics like Addition or subtraction on general nth term we can get our desired result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE