
In an adiabatic process, the pressure is increased by $\dfrac{2}{3}$ %. If $\gamma = \dfrac{3}{2}$, then nearly by what percentage the volume decreases?
${\text{A}}{\text{.}}$ $\dfrac{4}{9}$ %
${\text{B}}{\text{.}}$ $\dfrac{2}{3}$ %
${\text{C}}{\text{.}}$ 1 %
${\text{D}}{\text{.}}$ $\dfrac{9}{4}$ %
Answer
521.4k+ views
Hint: Here, we will proceed by taking the natural logarithm of the general equation for any adiabatic process. Through this, we will represent the percentage change in pressure with the percentage change in volume.
Formulas Used- ${\text{P}}{{\text{V}}^\gamma }$ = c, $\ln \left( {ab} \right) = \ln a + \ln b$, $\ln \left( {{a^b}} \right) = b\ln a$ and $\ln x + a\ln y = b \Rightarrow \dfrac{{\Delta x}}{x} + a\dfrac{{\Delta y}}{y} = 0$.
Step By Step Answer:
Given, Percentage increase in the pressure = $\dfrac{2}{3}$ %
Adiabatic index $\gamma = \dfrac{3}{2}$
As we know that in any adiabatic process, ${\text{P}}{{\text{V}}^\gamma }$ = c $ \to (1)$ where P is the pressure in the adiabatic process, V is the volume in the adiabatic process, $\gamma $ is the adiabatic index and c is any constant
By taking natural logarithm on both sides of equation (1), we get
$ \Rightarrow \ln \left( {{\text{P}}{{\text{V}}^\gamma }} \right) = \ln \left( {\text{c}} \right)$
Using the formula $\ln \left( {ab} \right) = \ln a + \ln b$ in the above equation, we get
$ \Rightarrow \ln \left( {\text{P}} \right) + \ln \left( {{{\text{V}}^\gamma }} \right) = \ln \left( {\text{c}} \right)$
By using the formula $\ln \left( {{a^b}} \right) = b\ln a$ in the above equation, we get
$ \Rightarrow \ln \left( {\text{P}} \right) + \gamma \ln \left( {\text{V}} \right) = \ln \left( {\text{c}} \right)$
By putting $\gamma = \dfrac{3}{2}$ in the above equation, we get
$ \Rightarrow \ln \left( {\text{P}} \right) + \dfrac{3}{2}\ln \left( {\text{V}} \right) = \ln \left( {\text{c}} \right){\text{ }} \to {\text{(2)}}$
Also we know that any equation in x and y variables given by $\ln x + a\ln y = b$ where a and b are constants can be written as
\[ \Rightarrow \dfrac{{\Delta x}}{x} + a\dfrac{{\Delta y}}{y} = 0\]
Using the above concept, equation (1) can be written in terms of change in pressure and change in volume (these two are variables) can be written as
\[ \Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} + \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = 0{\text{ }} \to {\text{(2)}}\]
As, Percentage increase in pressure = $\dfrac{{{\text{Final Pressure}} - {\text{Initial Pressure}}}}{{{\text{Initial Pressure}}}} \times 100 = \dfrac{{\Delta {\text{P}}}}{{\text{P}}} \times 100$ % where $\Delta {\text{P}}$ denotes the change in pressure
$
\Rightarrow \dfrac{2}{3} = \dfrac{{\Delta {\text{P}}}}{{\text{P}}} \times 100 \\
\Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{3 \times 100}} \\
\Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{300}} \\
$
By substituting $\dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{300}}$ in equation (2), we get
\[
\Rightarrow \dfrac{2}{{300}} + \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = 0 \\
\Rightarrow \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{2}{{300}} \\
\Rightarrow \dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{{2 \times 2}}{{300 \times 3}} \\
\Rightarrow \dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{4}{{900}} \\
\]
Also, Percentage change in volume = $\dfrac{{{\text{Final Volume}} - {\text{Initial Volume}}}}{{{\text{Initial Volume}}}} \times 100 = \dfrac{{\Delta {\text{V}}}}{{\text{V}}} \times 100$ % where $\Delta {\text{V}}$ denotes the change in volume
Percentage change in volume = $ - \dfrac{4}{{900}} \times 100 = - \dfrac{4}{9}$ %
The negative sign of the percentage change in volume means that the volume is decreased.
Therefore, the percentage decrease in volume is $\dfrac{4}{9}$ %
Hence, option A is correct.
Note- In this particular problem, P and V are considered as two state variables which are basically varied as the state is changed. Also, the percentage change in any quantity is defined as the ratio of the change in the value of that quantity to the original value of that quantity multiplied by 100. This percentage change can be percentage increase or percentage decrease.
Formulas Used- ${\text{P}}{{\text{V}}^\gamma }$ = c, $\ln \left( {ab} \right) = \ln a + \ln b$, $\ln \left( {{a^b}} \right) = b\ln a$ and $\ln x + a\ln y = b \Rightarrow \dfrac{{\Delta x}}{x} + a\dfrac{{\Delta y}}{y} = 0$.
Step By Step Answer:
Given, Percentage increase in the pressure = $\dfrac{2}{3}$ %
Adiabatic index $\gamma = \dfrac{3}{2}$
As we know that in any adiabatic process, ${\text{P}}{{\text{V}}^\gamma }$ = c $ \to (1)$ where P is the pressure in the adiabatic process, V is the volume in the adiabatic process, $\gamma $ is the adiabatic index and c is any constant
By taking natural logarithm on both sides of equation (1), we get
$ \Rightarrow \ln \left( {{\text{P}}{{\text{V}}^\gamma }} \right) = \ln \left( {\text{c}} \right)$
Using the formula $\ln \left( {ab} \right) = \ln a + \ln b$ in the above equation, we get
$ \Rightarrow \ln \left( {\text{P}} \right) + \ln \left( {{{\text{V}}^\gamma }} \right) = \ln \left( {\text{c}} \right)$
By using the formula $\ln \left( {{a^b}} \right) = b\ln a$ in the above equation, we get
$ \Rightarrow \ln \left( {\text{P}} \right) + \gamma \ln \left( {\text{V}} \right) = \ln \left( {\text{c}} \right)$
By putting $\gamma = \dfrac{3}{2}$ in the above equation, we get
$ \Rightarrow \ln \left( {\text{P}} \right) + \dfrac{3}{2}\ln \left( {\text{V}} \right) = \ln \left( {\text{c}} \right){\text{ }} \to {\text{(2)}}$
Also we know that any equation in x and y variables given by $\ln x + a\ln y = b$ where a and b are constants can be written as
\[ \Rightarrow \dfrac{{\Delta x}}{x} + a\dfrac{{\Delta y}}{y} = 0\]
Using the above concept, equation (1) can be written in terms of change in pressure and change in volume (these two are variables) can be written as
\[ \Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} + \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = 0{\text{ }} \to {\text{(2)}}\]
As, Percentage increase in pressure = $\dfrac{{{\text{Final Pressure}} - {\text{Initial Pressure}}}}{{{\text{Initial Pressure}}}} \times 100 = \dfrac{{\Delta {\text{P}}}}{{\text{P}}} \times 100$ % where $\Delta {\text{P}}$ denotes the change in pressure
$
\Rightarrow \dfrac{2}{3} = \dfrac{{\Delta {\text{P}}}}{{\text{P}}} \times 100 \\
\Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{3 \times 100}} \\
\Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{300}} \\
$
By substituting $\dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{300}}$ in equation (2), we get
\[
\Rightarrow \dfrac{2}{{300}} + \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = 0 \\
\Rightarrow \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{2}{{300}} \\
\Rightarrow \dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{{2 \times 2}}{{300 \times 3}} \\
\Rightarrow \dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{4}{{900}} \\
\]
Also, Percentage change in volume = $\dfrac{{{\text{Final Volume}} - {\text{Initial Volume}}}}{{{\text{Initial Volume}}}} \times 100 = \dfrac{{\Delta {\text{V}}}}{{\text{V}}} \times 100$ % where $\Delta {\text{V}}$ denotes the change in volume
Percentage change in volume = $ - \dfrac{4}{{900}} \times 100 = - \dfrac{4}{9}$ %
The negative sign of the percentage change in volume means that the volume is decreased.
Therefore, the percentage decrease in volume is $\dfrac{4}{9}$ %
Hence, option A is correct.
Note- In this particular problem, P and V are considered as two state variables which are basically varied as the state is changed. Also, the percentage change in any quantity is defined as the ratio of the change in the value of that quantity to the original value of that quantity multiplied by 100. This percentage change can be percentage increase or percentage decrease.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
