
In a triangle $ABC,a,b,c $ are the length of its sides and $A,B,C$ are the angles of the triangle $ABC$. The correct relation is given by
A. $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
B. $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
C. $\left( b+c \right)\sin \left( \dfrac{B-C}{2} \right)=a\cos \dfrac{A}{2}$
D. $\left( b+c \right)\sin \left( \dfrac{A}{2} \right)=2a\sin \left( \dfrac{B+C}{2} \right)$
Answer
584.7k+ views
Hint: In this question, we will use the law of sines, which are, $\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}$ and $\sin B-\sin C=2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)$ to find the correct relation. We will also use $\sin \left( A \right)=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$. We can also write $\dfrac{b-c}{a}=\dfrac{2r\sin B-2r\sin C}{2r\sin A}$, using the sine law.
Complete step-by-step solution -
It is given in the question that in a triangle $ABC,a,b,c$ are the length of its sides and $A,B,C$ are the angles of the triangle $ABC$.
We know that the law of sines says that the ratio of sine of one angle to the opposite side is the same ratio as that of all the three angles, $\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k$. From this law of sine, we can write,
$\begin{align}
& \dfrac{\left( b-c \right)}{a}=\dfrac{k\left( \sin B \right)-k\left( \sin C \right)}{k\sin \left( A \right)} \\
& \Rightarrow \dfrac{\left( b-c \right)}{a}=\dfrac{k\left[ \left( \sin B \right)-\left( \sin C \right) \right]}{k\sin \left( A \right)} \\
& \Rightarrow \dfrac{\left( b-c \right)}{a}=\dfrac{\left( \sin B \right)-\left( \sin C \right)}{\sin \left( A \right)} \\
\end{align}$
We know that $\sin B-\sin C=2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)$ and $\sin \left( A \right)=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$, so by applying that in the above equation, we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)}{2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)}\ldots \ldots \ldots \left( i \right)$
We know that $A+B+C=\pi $, as the sum of all the angles of a triangle is equal to $\pi $. So, we can write $B+C=\pi -A$. Therefore, the angle $\cos \left( \dfrac{B+C}{2} \right)$ as $\cos \left( \dfrac{\pi -A}{2} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)$. Then we can use $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$, so we get, $\cos \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)=\sin \dfrac{A}{2}$. So, by substituting the value in the equation (i), we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{2\sin \dfrac{A}{2}.\sin \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}}$
By cancelling the similar terms from the numerator and the denominator, we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{\sin \left( \dfrac{B-C}{2} \right)}{\cos \dfrac{A}{2}}$
Now, by cross multiplying, we get,
$\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
Hence, the correct answer to the given question is option B, $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$.
Note: It becomes much easier to solve this question with the use of the trigonometric formulas like, $\sin A=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$ and $\sin \left( B-C \right)=2\sin \left( \dfrac{B-C}{2} \right).\cos \left( \dfrac{B+C}{2} \right)$. Most of the students get stuck while solving this type of questions as they do not remember the formula of the trigonometric functions, especially the trigonometric functions of sub-angles. Therefore, it is advisable to memorise all the formulas.
Complete step-by-step solution -
It is given in the question that in a triangle $ABC,a,b,c$ are the length of its sides and $A,B,C$ are the angles of the triangle $ABC$.
We know that the law of sines says that the ratio of sine of one angle to the opposite side is the same ratio as that of all the three angles, $\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k$. From this law of sine, we can write,
$\begin{align}
& \dfrac{\left( b-c \right)}{a}=\dfrac{k\left( \sin B \right)-k\left( \sin C \right)}{k\sin \left( A \right)} \\
& \Rightarrow \dfrac{\left( b-c \right)}{a}=\dfrac{k\left[ \left( \sin B \right)-\left( \sin C \right) \right]}{k\sin \left( A \right)} \\
& \Rightarrow \dfrac{\left( b-c \right)}{a}=\dfrac{\left( \sin B \right)-\left( \sin C \right)}{\sin \left( A \right)} \\
\end{align}$
We know that $\sin B-\sin C=2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)$ and $\sin \left( A \right)=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$, so by applying that in the above equation, we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)}{2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)}\ldots \ldots \ldots \left( i \right)$
We know that $A+B+C=\pi $, as the sum of all the angles of a triangle is equal to $\pi $. So, we can write $B+C=\pi -A$. Therefore, the angle $\cos \left( \dfrac{B+C}{2} \right)$ as $\cos \left( \dfrac{\pi -A}{2} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)$. Then we can use $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$, so we get, $\cos \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)=\sin \dfrac{A}{2}$. So, by substituting the value in the equation (i), we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{2\sin \dfrac{A}{2}.\sin \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}}$
By cancelling the similar terms from the numerator and the denominator, we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{\sin \left( \dfrac{B-C}{2} \right)}{\cos \dfrac{A}{2}}$
Now, by cross multiplying, we get,
$\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
Hence, the correct answer to the given question is option B, $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$.
Note: It becomes much easier to solve this question with the use of the trigonometric formulas like, $\sin A=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$ and $\sin \left( B-C \right)=2\sin \left( \dfrac{B-C}{2} \right).\cos \left( \dfrac{B+C}{2} \right)$. Most of the students get stuck while solving this type of questions as they do not remember the formula of the trigonometric functions, especially the trigonometric functions of sub-angles. Therefore, it is advisable to memorise all the formulas.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

