Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

In a triangle $ABC,a,b,c $ are the length of its sides and $A,B,C$ are the angles of the triangle $ABC$. The correct relation is given by
A. $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
B. $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
C. $\left( b+c \right)\sin \left( \dfrac{B-C}{2} \right)=a\cos \dfrac{A}{2}$
D. $\left( b+c \right)\sin \left( \dfrac{A}{2} \right)=2a\sin \left( \dfrac{B+C}{2} \right)$


Answer
VerifiedVerified
584.7k+ views
Hint: In this question, we will use the law of sines, which are, $\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}$ and $\sin B-\sin C=2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)$ to find the correct relation. We will also use $\sin \left( A \right)=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$. We can also write $\dfrac{b-c}{a}=\dfrac{2r\sin B-2r\sin C}{2r\sin A}$, using the sine law.

Complete step-by-step solution -
It is given in the question that in a triangle $ABC,a,b,c$ are the length of its sides and $A,B,C$ are the angles of the triangle $ABC$.
seo images

We know that the law of sines says that the ratio of sine of one angle to the opposite side is the same ratio as that of all the three angles, $\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k$. From this law of sine, we can write,
$\begin{align}
  & \dfrac{\left( b-c \right)}{a}=\dfrac{k\left( \sin B \right)-k\left( \sin C \right)}{k\sin \left( A \right)} \\
 & \Rightarrow \dfrac{\left( b-c \right)}{a}=\dfrac{k\left[ \left( \sin B \right)-\left( \sin C \right) \right]}{k\sin \left( A \right)} \\
 & \Rightarrow \dfrac{\left( b-c \right)}{a}=\dfrac{\left( \sin B \right)-\left( \sin C \right)}{\sin \left( A \right)} \\
\end{align}$
We know that $\sin B-\sin C=2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)$ and $\sin \left( A \right)=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$, so by applying that in the above equation, we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{2\cos \left( \dfrac{B+C}{2} \right).\sin \left( \dfrac{B-C}{2} \right)}{2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)}\ldots \ldots \ldots \left( i \right)$
We know that $A+B+C=\pi $, as the sum of all the angles of a triangle is equal to $\pi $. So, we can write $B+C=\pi -A$. Therefore, the angle $\cos \left( \dfrac{B+C}{2} \right)$ as $\cos \left( \dfrac{\pi -A}{2} \right)=\cos \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)$. Then we can use $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$, so we get, $\cos \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)=\sin \dfrac{A}{2}$. So, by substituting the value in the equation (i), we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{2\sin \dfrac{A}{2}.\sin \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}}$
By cancelling the similar terms from the numerator and the denominator, we get,
$\dfrac{\left( b-c \right)}{a}=\dfrac{\sin \left( \dfrac{B-C}{2} \right)}{\cos \dfrac{A}{2}}$
Now, by cross multiplying, we get,
$\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$
Hence, the correct answer to the given question is option B, $\left( b-c \right)\cos \left( \dfrac{A}{2} \right)=a\sin \left( \dfrac{B-C}{2} \right)$.

Note: It becomes much easier to solve this question with the use of the trigonometric formulas like, $\sin A=2\sin \left( \dfrac{A}{2} \right).\cos \left( \dfrac{A}{2} \right)$ and $\sin \left( B-C \right)=2\sin \left( \dfrac{B-C}{2} \right).\cos \left( \dfrac{B+C}{2} \right)$. Most of the students get stuck while solving this type of questions as they do not remember the formula of the trigonometric functions, especially the trigonometric functions of sub-angles. Therefore, it is advisable to memorise all the formulas.