
In a triangle ABC, G is the centroid (point of concurrency of the triangle’s medians) and E is any point. If \[{\text{BC = }}a\] , \[{\text{AC = b}}\] , \[{\text{AB = c}}\] , \[{\text{AE = }}{e_a}\] , \[{\text{BE = }}{e_b}\] , \[{\text{CE = }}{e_c}\] and \[{\text{EG = }}m\] then find the value of \[\dfrac{{{a^2} + {b^2} + {c^2}}}{{{e_a}^2 + {e_b}^2 + {e_c}^2 - 3{m^2}}}\] .
Answer
506.1k+ views
Hint: The point of concurrency is a point where three or more lines or rays intersect with each other. Use triangles AEG, BEG and CEG and make an equation by keeping in mind the lengths of the sides then squaring both sides of all equations and then them all to find the value of the expression given in the question.
Complete step-by-step answer:
A centroid is a point where three medians of a triangle meet. In other words, the centroid G of a triangle ABC is the intersection of the three medians or the average of the three vertices (A, B, C).
It is given that \[{\text{BC = }}a\] , \[{\text{AC = b}}\] , \[{\text{AB = c}}\] , \[{\text{AE = }}{e_a}\] , \[{\text{BE = }}{e_b}\] , \[{\text{CE = }}{e_c}\] and \[{\text{EG = }}m\]
As we know that if G is the centroid of a triangle and we joined the centroid of the triangle to the vertices then
\[\overrightarrow {{\text{GA}}} {\text{ + }}\overrightarrow {{\text{GB}}} {\text{ + }}\overrightarrow {{\text{GC}}} {\text{ = }}\overrightarrow {\text{0}} \] --------- (i)
Also it is given that E is any point in the triangle ABC from which we connect it to the vertices of the triangle. Also the line segment EG is in the direction from E to G. Therefore, in triangle AEG we have
\[\overrightarrow {{\text{EA}}} = \overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GA}}} \]
On squaring both sides we get
\[{\left| {{\text{EA}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GA}}} \right|\] ------- (ii)
Similarly in triangle BEG we have
\[\overrightarrow {{\text{EB}}} {\text{ = }}\overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GB}}} \]
On squaring both sides we get
\[{\left| {{\text{EB}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GB}}} \right|\] -------- (iii)
Again in the triangle CEG we have
\[\overrightarrow {{\text{EC}}} {\text{ = }}\overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GC}}} \]
On squaring both sides we get
\[{\left| {{\text{EC}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GC}}} \right|\] --------(iv)
On adding equations (ii), (iii) and (iv) we get
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GA}}} \right|\] \[{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GB}}} \right|\] \[{\text{ + }}{\left| {{\text{GC}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GC}}} \right|\]
By taking \[{\text{2}}\left| {{\text{EG}}} \right|\] common the above expression becomes
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}\] \[{\text{ + 2}}\left| {{\text{EG}}} \right|.\left( {\left| {{\text{GA}}} \right|{\text{ + }}\left| {{\text{GB}}} \right|{\text{ + }}\left| {{\text{GC}}} \right|} \right)\]
Using equation (i) we get
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}\] \[{\text{ + 2}}\left| {{\text{EG}}} \right|.\overrightarrow 0 \] ---------(v)
As we know that the centroid G of a triangle ABC is the average of the three vertices of the triangle therefore we can say that \[{\left| {{\text{AB}}} \right|^2}{\text{ + }}{\left| {{\text{BC}}} \right|^2}{\text{ + }}{\left| {{\text{CA}}} \right|^2}{\text{ = }}3\left( {{{\left| {{\text{GA}}} \right|}^2}{\text{ + }}{{\left| {{\text{GB}}} \right|}^2}{\text{ + }}{{\left| {{\text{GC}}} \right|}^2}} \right)\] that is \[\dfrac{{{{\left| {{\text{AB}}} \right|}^2}{\text{ + }}{{\left| {{\text{BC}}} \right|}^2}{\text{ + }}{{\left| {{\text{CA}}} \right|}^2}}}{3}{\text{ = }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}\]
So the equation (v) becomes
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2} + \dfrac{{{{\left| {{\text{AB}}} \right|}^2}{\text{ + }}{{\left| {{\text{BC}}} \right|}^2}{\text{ + }}{{\left| {{\text{CA}}} \right|}^2}}}{3}\]
Now by substituting the values given in the question we get
\[{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2\] \[{\text{ = }}\] \[3{m^2} + \dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{3}\]
By shifting \[3{m^2}\] to the left side we have
\[\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{3}{\text{ = }}{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}\]
Or we can write the above expression as
\[\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{{{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}}}{\text{ = }}3\]
Hence the value of \[\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{{{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}}}\] is \[3\] .
So, the correct answer is “3”.
Note: The centroid divides each of the medians in the ratio \[2:1\] . Centroid always lies within the triangle. Substitute the values carefully otherwise you will get the wrong answer. Keep in mind all the properties of a triangle or formulas that we used in the solution. Also keep in mind that \[\overrightarrow {{\text{GA}}} {\text{ + }}\overrightarrow {{\text{GB}}} {\text{ + }}\overrightarrow {{\text{GC}}} {\text{ = }}\overrightarrow {\text{0}} \] as G is the point of concurrency in the triangle ABC.
Complete step-by-step answer:
A centroid is a point where three medians of a triangle meet. In other words, the centroid G of a triangle ABC is the intersection of the three medians or the average of the three vertices (A, B, C).
It is given that \[{\text{BC = }}a\] , \[{\text{AC = b}}\] , \[{\text{AB = c}}\] , \[{\text{AE = }}{e_a}\] , \[{\text{BE = }}{e_b}\] , \[{\text{CE = }}{e_c}\] and \[{\text{EG = }}m\]
As we know that if G is the centroid of a triangle and we joined the centroid of the triangle to the vertices then
\[\overrightarrow {{\text{GA}}} {\text{ + }}\overrightarrow {{\text{GB}}} {\text{ + }}\overrightarrow {{\text{GC}}} {\text{ = }}\overrightarrow {\text{0}} \] --------- (i)
Also it is given that E is any point in the triangle ABC from which we connect it to the vertices of the triangle. Also the line segment EG is in the direction from E to G. Therefore, in triangle AEG we have
\[\overrightarrow {{\text{EA}}} = \overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GA}}} \]
On squaring both sides we get
\[{\left| {{\text{EA}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GA}}} \right|\] ------- (ii)
Similarly in triangle BEG we have
\[\overrightarrow {{\text{EB}}} {\text{ = }}\overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GB}}} \]
On squaring both sides we get
\[{\left| {{\text{EB}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GB}}} \right|\] -------- (iii)
Again in the triangle CEG we have
\[\overrightarrow {{\text{EC}}} {\text{ = }}\overrightarrow {{\text{EG}}} {\text{ + }}\overrightarrow {{\text{GC}}} \]
On squaring both sides we get
\[{\left| {{\text{EC}}} \right|^2} = {\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GC}}} \right|\] --------(iv)
On adding equations (ii), (iii) and (iv) we get
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GA}}} \right|\] \[{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GB}}} \right|\] \[{\text{ + }}{\left| {{\text{GC}}} \right|^2}{\text{ + 2}}\left| {{\text{EG}}} \right|.\left| {{\text{GC}}} \right|\]
By taking \[{\text{2}}\left| {{\text{EG}}} \right|\] common the above expression becomes
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}\] \[{\text{ + 2}}\left| {{\text{EG}}} \right|.\left( {\left| {{\text{GA}}} \right|{\text{ + }}\left| {{\text{GB}}} \right|{\text{ + }}\left| {{\text{GC}}} \right|} \right)\]
Using equation (i) we get
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2}{\text{ + }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}\] \[{\text{ + 2}}\left| {{\text{EG}}} \right|.\overrightarrow 0 \] ---------(v)
As we know that the centroid G of a triangle ABC is the average of the three vertices of the triangle therefore we can say that \[{\left| {{\text{AB}}} \right|^2}{\text{ + }}{\left| {{\text{BC}}} \right|^2}{\text{ + }}{\left| {{\text{CA}}} \right|^2}{\text{ = }}3\left( {{{\left| {{\text{GA}}} \right|}^2}{\text{ + }}{{\left| {{\text{GB}}} \right|}^2}{\text{ + }}{{\left| {{\text{GC}}} \right|}^2}} \right)\] that is \[\dfrac{{{{\left| {{\text{AB}}} \right|}^2}{\text{ + }}{{\left| {{\text{BC}}} \right|}^2}{\text{ + }}{{\left| {{\text{CA}}} \right|}^2}}}{3}{\text{ = }}{\left| {{\text{GA}}} \right|^2}{\text{ + }}{\left| {{\text{GB}}} \right|^2}{\text{ + }}{\left| {{\text{GC}}} \right|^2}\]
So the equation (v) becomes
\[{\left| {{\text{EA}}} \right|^2}{\text{ + }}{\left| {{\text{EB}}} \right|^2}{\text{ + }}{\left| {{\text{EC}}} \right|^2}\] \[{\text{ = }}\] \[3{\left| {{\text{EG}}} \right|^2} + \dfrac{{{{\left| {{\text{AB}}} \right|}^2}{\text{ + }}{{\left| {{\text{BC}}} \right|}^2}{\text{ + }}{{\left| {{\text{CA}}} \right|}^2}}}{3}\]
Now by substituting the values given in the question we get
\[{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2\] \[{\text{ = }}\] \[3{m^2} + \dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{3}\]
By shifting \[3{m^2}\] to the left side we have
\[\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{3}{\text{ = }}{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}\]
Or we can write the above expression as
\[\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{{{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}}}{\text{ = }}3\]
Hence the value of \[\dfrac{{{a^2}{\text{ + }}{b^2}{\text{ + }}{c^2}}}{{{e_a}^2{\text{ + }}{e_b}^2{\text{ + }}{e_c}^2 - 3{m^2}}}\] is \[3\] .
So, the correct answer is “3”.
Note: The centroid divides each of the medians in the ratio \[2:1\] . Centroid always lies within the triangle. Substitute the values carefully otherwise you will get the wrong answer. Keep in mind all the properties of a triangle or formulas that we used in the solution. Also keep in mind that \[\overrightarrow {{\text{GA}}} {\text{ + }}\overrightarrow {{\text{GB}}} {\text{ + }}\overrightarrow {{\text{GC}}} {\text{ = }}\overrightarrow {\text{0}} \] as G is the point of concurrency in the triangle ABC.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

