
In a triangle, ABC, a, c and A are given and m = 2n where m and n are the two possible values of the third side. Prove that $3a=c\sqrt{1+8{{\sin }^{2}}A}$
Answer
613.5k+ views
Hint: Use cosine rule to create a quadratic in b. Use the fact that m and n are the roots of the quadratic. Use the proper that if m,n are the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ then
$m+n=\dfrac{-b}{a}$ and $mn=\dfrac{c}{a}$ . Compare the two equations to get the above relation.
Complete step-by-step answer:
In the diagram above, it can be seen that there are two possible values of AC, viz $A{{C}_{1}}$ and $A{{C}_{2}}$ .
We know that in a $\Delta ABC$
$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$
Multiplying both sides by 2bc, we get
$2bc\cos A={{b}^{2}}+{{c}^{2}}-{{a}^{2}}$
Subtracting 2bc cosA from both sides, we get
\[\begin{align}
& 2bc\cos A-2bc\cos A={{b}^{2}}+{{c}^{2}}-{{a}^{2}}-2bc\cos A \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}-2bc\cos A=0 \\
& \Rightarrow {{b}^{2}}-2bc\cos A+{{c}^{2}}-{{a}^{2}}=0 \\
\end{align}\]
which is a quadratic expression in b whose roots are m and n
Using the property that, the sum of roots $=\dfrac{-b}{a}$ and product of roots $=\dfrac{c}{a}$
So we have
$\begin{align}
& m+n\text{ }=\text{ }2bc\text{ }cosA \\
& mn={{c}^{2}}-{{a}^{2}} \\
\end{align}$
Put m = 2n in both equations, we get
$\begin{align}
& 2n+n\text{ }=\text{ }2c\text{ }cosA \\
& \Rightarrow 3n=2c\cos A\text{ (i)} \\
& 2n\left( n \right)={{c}^{2}}-{{a}^{2}} \\
& \Rightarrow 2{{n}^{2}}={{c}^{2}}-{{a}^{2}}\text{ (ii)} \\
\end{align}$
Squaring equation (i) and dividing (i) by (ii), we get
$\begin{align}
& \dfrac{9{{n}^{2}}}{2{{n}^{2}}}=\dfrac{4{{c}^{2}}{{\cos }^{2}}A}{{{c}^{2}}-{{a}^{2}}} \\
& \Rightarrow \dfrac{9}{2}=\dfrac{4{{c}^{2}}{{\cos }^{2}}A}{{{c}^{2}}-{{a}^{2}}} \\
\end{align}$
Cross multiplying we get
$9{{c}^{2}}-9{{a}^{2}}=8{{c}^{2}}{{\cos }^{2}}A$
Adding $9{{a}^{2}}$ on both sides, we get
$9{{c}^{2}}=8{{c}^{2}}{{\cos }^{2}}A+9{{a}^{2}}$
Subtracting $8{{c}^{2}}{{\cos }^{2}}A$ from both sides, we get
$\begin{align}
& 9{{c}^{2}}-8{{c}^{2}}{{\cos }^{2}}A=8{{c}^{2}}{{\cos }^{2}}A+9{{a}^{2}}-8{{c}^{2}}{{\cos }^{2}}A \\
& \Rightarrow 9{{a}^{2}}={{c}^{2}}\left( 9-8{{\cos }^{2}}A \right) \\
& \Rightarrow 9{{a}^{2}}={{c}^{2}}\left( 1+8\left( 1-{{\cos }^{2}}A \right) \right) \\
\end{align}$
Using ${{\sin }^{2}}A=1-{{\cos }^{2}}A$ we get
$9{{a}^{2}}={{c}^{2}}\left( 1+8{{\sin }^{2}}A \right)$
Taking square root on both sides, we get
$3a=c\sqrt{1+8{{\sin }^{2}}A}$
Note: Alternatively you can use the quadratic formula to solve
We have
$\begin{align}
& m=\dfrac{2c\cos A+\sqrt{4{{c}^{2}}{{\cos }^{2}}A-4\left( {{c}^{2}}-{{a}^{2}} \right)}}{2} \\
& =c\cos A+\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}} \\
\end{align}$
And $n=c\cos A-\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}}$
Given m = 2n
Using we get
$\begin{align}
& c\cos A+\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}}=2\left( c\cos A-\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}} \right) \\
& \Rightarrow c\cos A=3\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}} \\
\end{align}$
Squaring both sides, we get
\[\begin{align}
& {{c}^{2}}{{\cos }^{2}}A=9\left( {{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}} \right) \\
& \Rightarrow {{c}^{2}}{{\cos }^{2}}A=9{{c}^{2}}{{\cos }^{2}}A-9{{c}^{2}}+9{{a}^{2}} \\
& \Rightarrow 9{{c}^{2}}-8{{c}^{2}}{{\cos }^{2}}A=9{{a}^{2}} \\
& \Rightarrow {{c}^{2}}+8{{c}^{2}}\left( 1-{{\cos }^{2}}A \right)=9{{a}^{2}} \\
& \Rightarrow {{c}^{2}}+8{{c}^{2}}{{\sin }^{2}}A=9{{a}^{2}} \\
\end{align}\]
Taking square root on both sides, we get
$\begin{align}
& \sqrt{{{c}^{2}}\left( 1+8{{\sin }^{2}}A \right)}=\sqrt{9{{a}^{2}}} \\
& \Rightarrow c\sqrt{1+8{{\sin }^{2}}A}=3a \\
\end{align}$
Hence proved.
Observe that we chose $m=\dfrac{2c\cos A+\sqrt{4{{c}^{2}}{{\cos }^{2}}A-4\left( {{c}^{2}}-{{a}^{2}} \right)}}{2}$ and not $n=\dfrac{2c\cos A+\sqrt{4{{c}^{2}}{{\cos }^{2}}A-4\left( {{c}^{2}}-{{a}^{2}} \right)}}{2}$ because m>n since m = 2n
$m+n=\dfrac{-b}{a}$ and $mn=\dfrac{c}{a}$ . Compare the two equations to get the above relation.
Complete step-by-step answer:
In the diagram above, it can be seen that there are two possible values of AC, viz $A{{C}_{1}}$ and $A{{C}_{2}}$ .
We know that in a $\Delta ABC$
$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$
Multiplying both sides by 2bc, we get
$2bc\cos A={{b}^{2}}+{{c}^{2}}-{{a}^{2}}$
Subtracting 2bc cosA from both sides, we get
\[\begin{align}
& 2bc\cos A-2bc\cos A={{b}^{2}}+{{c}^{2}}-{{a}^{2}}-2bc\cos A \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}-2bc\cos A=0 \\
& \Rightarrow {{b}^{2}}-2bc\cos A+{{c}^{2}}-{{a}^{2}}=0 \\
\end{align}\]
which is a quadratic expression in b whose roots are m and n
Using the property that, the sum of roots $=\dfrac{-b}{a}$ and product of roots $=\dfrac{c}{a}$
So we have
$\begin{align}
& m+n\text{ }=\text{ }2bc\text{ }cosA \\
& mn={{c}^{2}}-{{a}^{2}} \\
\end{align}$
Put m = 2n in both equations, we get
$\begin{align}
& 2n+n\text{ }=\text{ }2c\text{ }cosA \\
& \Rightarrow 3n=2c\cos A\text{ (i)} \\
& 2n\left( n \right)={{c}^{2}}-{{a}^{2}} \\
& \Rightarrow 2{{n}^{2}}={{c}^{2}}-{{a}^{2}}\text{ (ii)} \\
\end{align}$
Squaring equation (i) and dividing (i) by (ii), we get
$\begin{align}
& \dfrac{9{{n}^{2}}}{2{{n}^{2}}}=\dfrac{4{{c}^{2}}{{\cos }^{2}}A}{{{c}^{2}}-{{a}^{2}}} \\
& \Rightarrow \dfrac{9}{2}=\dfrac{4{{c}^{2}}{{\cos }^{2}}A}{{{c}^{2}}-{{a}^{2}}} \\
\end{align}$
Cross multiplying we get
$9{{c}^{2}}-9{{a}^{2}}=8{{c}^{2}}{{\cos }^{2}}A$
Adding $9{{a}^{2}}$ on both sides, we get
$9{{c}^{2}}=8{{c}^{2}}{{\cos }^{2}}A+9{{a}^{2}}$
Subtracting $8{{c}^{2}}{{\cos }^{2}}A$ from both sides, we get
$\begin{align}
& 9{{c}^{2}}-8{{c}^{2}}{{\cos }^{2}}A=8{{c}^{2}}{{\cos }^{2}}A+9{{a}^{2}}-8{{c}^{2}}{{\cos }^{2}}A \\
& \Rightarrow 9{{a}^{2}}={{c}^{2}}\left( 9-8{{\cos }^{2}}A \right) \\
& \Rightarrow 9{{a}^{2}}={{c}^{2}}\left( 1+8\left( 1-{{\cos }^{2}}A \right) \right) \\
\end{align}$
Using ${{\sin }^{2}}A=1-{{\cos }^{2}}A$ we get
$9{{a}^{2}}={{c}^{2}}\left( 1+8{{\sin }^{2}}A \right)$
Taking square root on both sides, we get
$3a=c\sqrt{1+8{{\sin }^{2}}A}$
Note: Alternatively you can use the quadratic formula to solve
We have
$\begin{align}
& m=\dfrac{2c\cos A+\sqrt{4{{c}^{2}}{{\cos }^{2}}A-4\left( {{c}^{2}}-{{a}^{2}} \right)}}{2} \\
& =c\cos A+\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}} \\
\end{align}$
And $n=c\cos A-\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}}$
Given m = 2n
Using we get
$\begin{align}
& c\cos A+\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}}=2\left( c\cos A-\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}} \right) \\
& \Rightarrow c\cos A=3\sqrt{{{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}}} \\
\end{align}$
Squaring both sides, we get
\[\begin{align}
& {{c}^{2}}{{\cos }^{2}}A=9\left( {{c}^{2}}{{\cos }^{2}}A-{{c}^{2}}+{{a}^{2}} \right) \\
& \Rightarrow {{c}^{2}}{{\cos }^{2}}A=9{{c}^{2}}{{\cos }^{2}}A-9{{c}^{2}}+9{{a}^{2}} \\
& \Rightarrow 9{{c}^{2}}-8{{c}^{2}}{{\cos }^{2}}A=9{{a}^{2}} \\
& \Rightarrow {{c}^{2}}+8{{c}^{2}}\left( 1-{{\cos }^{2}}A \right)=9{{a}^{2}} \\
& \Rightarrow {{c}^{2}}+8{{c}^{2}}{{\sin }^{2}}A=9{{a}^{2}} \\
\end{align}\]
Taking square root on both sides, we get
$\begin{align}
& \sqrt{{{c}^{2}}\left( 1+8{{\sin }^{2}}A \right)}=\sqrt{9{{a}^{2}}} \\
& \Rightarrow c\sqrt{1+8{{\sin }^{2}}A}=3a \\
\end{align}$
Hence proved.
Observe that we chose $m=\dfrac{2c\cos A+\sqrt{4{{c}^{2}}{{\cos }^{2}}A-4\left( {{c}^{2}}-{{a}^{2}} \right)}}{2}$ and not $n=\dfrac{2c\cos A+\sqrt{4{{c}^{2}}{{\cos }^{2}}A-4\left( {{c}^{2}}-{{a}^{2}} \right)}}{2}$ because m>n since m = 2n
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

